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Proofs and Machines

In science nothing capable of proof ought to be accepted without
proof. —Richard Dedekind

The development of mathematics toward greater precision has led,
as is well known, to the formalization of large tracts of it, so one
can prove any theorem using nothing but a few mechanical
rules. –Kurt Gödel

Science is what we understand well enough to explain to a
computer. Art is everything else we do. —Donald Knuth

Checking mathematical proofs is potentially one of the most
interesting and useful applications of automatic
computers. —John McCarthy
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Overview

Proofs are used to rigorously derive irrefutable conclusions
using a small number of ‘self-evident’ principles of reasoning.

Mathematical claims in many scientific disciplines are
evaluated on the basis of proof.

Formal proofs can be constructed from a small number of
precisely stated axioms and rules of inference.

With the aid of proof assistants, decision procedures, and
theorem provers, it is possible to formally verify mathematical
claims by checking their proofs.

Will mathematicians (pure or applied) ever use proof
assistants in their work?

What attributes of a formal language/logic make it more or
less usable for capturing mathematical definitions, claims, and
proofs?

In using a proof assistant, what is the best division of labor
between the mathematician and the machine?
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What is a Pragmatic Foundation?

Foundational research, from the late nineteenth century on
down, has has focused on axiomatic frameworks for
formalizing mathematics such as Zermelo-Fraenkel (ZF) set
theory and Principia Mathematica (PM).
These formal calculi are the products of a reductionist
approach to foundations and fall short as a mathematical
vernacular.
Developing proofs in these calculi has proved difficult.
With the aid of mechanization, we can design a pragmatic
foundation where both formal expression and proof
construction are closer to ordinary mathematical discourse.
A suitable pragmatic foundation can make the interactive
development of abstract mathematical discourse a worthwhile
creative activity.
Disclaimer: SRI’s Prototype Verification System (PVS) is only
used to motivate the kind of features needed in a pragmatic
foundation.
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In the Beginning

Thales of Miletus (624 – 547 B.C.): Earliest known
person to be credited with theorems and proofs.

It was Thales who first conceived the
principle of explaining the multitude of
phenomena by a small number of hy-
potheses for all the various manifesta-
tions of matter.

Pythagoras of Samos (569–475 B.C.): Sys-
tematic study of mathematics for its own sake.

... he tried to use his symbolic method of
teaching which was similar in all respects
to the lessons he had learnt in Egypt.
The Samians were not very keen on this
method and treated him in a rude and
improper manner.
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The Axiomatic Method

Plato (427–347 B.C.): Suggested the idea
of a single axiom system for all knowledge.

the reality which scientific thought is seek-
ing must be expressible in mathematical
terms, mathematics being the most pre-
cise and definite kind of thinking of which
we are capable.

Aristotle (384–322 B.C.) of Stagira: Laid the foun-
dation for scientific thought by proposing that all
theoretical disciplines must be based on axiomatic
principles.
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The Elements

Euclid of Alexandria (325–265 B.C.): Systematic compila-
tion and exposition of geometry and number theory.

1 A straight line segment can be drawn joining any two
points.

2 Any straight line segment can be extended
indefinitely in a straight line.

3 Given any straight line segment, a circle can be
drawn having the segment as radius and one
endpoint as center.

4 All right angles are congruent.

5 If two lines are drawn which intersect a third in such
a way that the sum of the inner angles on one side is
less than two right angles, then the two lines
inevitably must intersect each other on that side if
extended far enough. This postulate is equivalent to
what is known as the parallel postulate.
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A Glimmer of Rationality

Ramon Llull (1235–1316): Talked of reducing all knowl-
edge to first principles. Developed a symbolic notation (Ars
Magna) and conceived of a reasoning machine.
When he attempted to apply rational thinking to religion,
Pope Gregor XI “accused him of confusing faith with reason
and condemned his teachings.”
Gottfried Leibniz (1646–1716) The idea of a formal lan-
guage (characteristica universalis) for expressing scholarly
knowledge and a mechanical method for making deductions
(calculus ratiocinator).
What must be achieved is in fact this: that every paralogism
be recognized as an error of calculation, and every sophism
when expressed in this new kind of notation, appear as a
solecism or barbarism, to be corrected easily by the laws of
this philosophical grammar.
Once this is done, then when a controversy arises, disputa-
tion will no more be needed between two philosophers than
between two computers. It will suffice that, pen in hand,
they sit down to their abacus and (calling in a friend, if they
so wish) say to each other: let us calculate.
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Formal Arithmetic

Richard Dedekind (1813–1916) : Early set theoretic
ideas, infinite sets, Dedekind cuts, arithmetic.

Giuseppe Peano (1858–1932) : Modern logic
notation, arithmetic.

0 6= S(x)
S(x) = S(y) =⇒ x = y
A(0) ∧ (∀x .A(x) =⇒ A(S(x))) =⇒ (∀x .A(x))
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Set Theory

Georg Cantor (1845–1918): Set
theory, transfinite sets, continuum
hypothesis.

Ernst Zermelo (1871–1953): For-
malized set theory, axiom of choice,
well-ordering principle.

Extensionality: x = y ⇐⇒ (∀z .z ∈ x ⇐⇒ z ∈ y)

Empty set ∀x .¬x ∈ ∅
Pairing: ∀x , y .∃z .∀u.u ∈ z ⇐⇒ u = x ∨ u = y

Union: ∀x .∃y .∀z .z ∈ y ⇐⇒ (∃w .z ∈ w ∧ w ∈ x)

Separation: {x ∈ y |A}, for any formula A, y 6∈ vars(A).

Infinity: There is a set containing all the finite ordinals.

Power set: For any set, we have the set of all its subsets.
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Modern Formal Logic

Gottlob Frege (1848–1925): A system of quantifi-
cational logic.

Bertrand Russell (1872–1970) and Al-
fred North Whitehead (1861–1947):
Ramified type theory, rigorous formal
development of a significant portion of
mathematics.

()i is the type of propositions of order i .

(τ i11 , . . . , τ
im
m )i with i > max(i1, . . . , in), is the type of

propositional functions from τ1 × . . .× τm, possibly
quantifying over variables of order below i .
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Simple Type Theory

Kurt Gödel (1906–1978): Completeness: Every
statement has a counter-model or a proof.
Incompleteness: Any consistent formal theory
for arithmetic contains statements that are nei-
ther provable nor disprovable.
Such a theory cannot prove its own consistency.

Alonzo Church (1909–1995): Lambda calculus,
recursive unsolvability, Church’s thesis, simple
type theory.

The types of individuals i and propositions o at level 0

The function type S→T is a type at level n + 1 if S is a type
at level at most n and T is a type at level at most n + 1.
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Early Proof Assistants [Automath, LCF,
Thm/Nqthm/ACL2]

John McCarthy N. G. de Bruijn Woody Bledsoe

Robin Milner Bob Boyer J Moore
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Higher-order Logic

Types:

bool and real are types
[T1→T2] and [T1, . . . ,Tn] are types if the Ti are.

Products (in n-ary form) are useful so that functions don’t
have to be Curried.

Terms:

Constants: TRUE, FALSE, 0, 1.
Variables
Application: f a
Abstraction: λ(x : T ) : t
Pairing: (t1, t2)
Projections: PROJi t

Polymorphic equality b = c and conditional IF[T ](a, b, c),
where a is of type bool and b and c are of type
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Simple Type System: Type Rules

Γ ` x : T
Γ(x) = T

Γ, x : S ` a : T

Γ ` λ(x : S) : a : [S→T ]

Γ ` f : [S→T ] Γ ` a : S

Γ ` f a : T

Γ ` TRUE : bool
,

Γ ` FALSE : bool
.

Γ ` a : T Γ ` b : T

Γ ` a = b : bool

Γ ` a : bool Γ ` b : T Γ ` c : T

Γ ` IF[T ](a, b, c)

Γ ` a1 : T1 Γ ` a2 : T2

Γ ` (a1, a2) : [T1,T2]

Γ ` a : [T1,T2]

Γ ` PROJia : Ti
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Higher-Order Logic

Higher-order logic makes it possible to define concepts like
fixpoints and finiteness.

Axiom schemes like induction can be written as axioms:

∀P.P(0) ∧ (∀n.P(n) =⇒ P(S(n))) =⇒ (∀n.P(n)).

The completeness axiom for reals can be stated as

real_complete: AXIOM

FORALL S:

(EXISTS y: upper_bound?(y, S)) IMPLIES

(EXISTS y: least_upper_bound?(y, S))

The semantics of higher-order logic can be given in Zermelo
set theory.
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What about Definitions?

A typical reductionist attitude is to show that adding a
definition is conservative.

In a pragmatic foundation, definitions should be primitive.
Primitive Recursive Arithmetic (PRA) [Skolem, Curry, and
Gödel’s System T for higher-order primitive recursion] allows
definitions:

f (x) = g(x , h1(x), . . . hm(x))
f (0, x) = g(x)
f (S(n), x) = h(f (n, x), n, x)

The equality a(n, x) = b(n, x) holds if a(n, x), b(n, x) satisfy
the same recursion scheme. [Goodstein]

This was rediscovered in the context of Lisp as
recursion-induction by McCarthy.

The Boyer–Moore family of provers extended this to accept all
recursive definitions with a decreasing ordinal measure.

PVS accepts any recursive definition with a well-founded
measure.
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Domains of Definition: Division and Square Root

With definitions, even primitive recursive ones, you can define
addition, multiplication, exponentiation, etc.

But how should division be defined? What is 1/0? What is
the definition of the real square-root operation on negative
numbers?

Several approaches have been tried:

Let 1/0 be 0, but then the rule x · (y/x) = y clashes with
0 · x = 0.
Let 1/0 remain uninterpreted, but again all the rules have to
be qualified.
Allow undefined terms =⇒ free logics: a lot of clutter due to
case analysis from undefined

PVS uses predicate subtypes to precisely define the domain of
a definition.
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PVS Subtypes

Add the type {x : T |a} or just (p) (for predicate p) to the simple
type system:

Γ ` T : TYPE Γ, x : T ` a : bool

Γ ` {x : T |a} : TYPE

Γ ` a : T Γ |= b[a/x ]

Γ ` a : {x : T |b}
Γ ` a : bool Γ, a ` b : T Γ,¬a ` c : T

Γ ` IF(a, b, c) : T

Γ ` f : [x : S→T ] Γ ` a : S

Γ ` f a : T [a/x ]

Γ, x : S ` a : T

Γ ` λ(x : S) : a : [x : S→T ]

Typechecking becomes undecidable, as do type emptiness and
type equivalence!

Semantically, subtypes are subsets, even at higher types
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Using Subtypes

Division can be declared as
nzreal: NONEMPTY_TYPE = {r: real | r /= 0} CONTAINING 1

/: [real, nzreal -> real]

With /= representing disequality, division can be type-checked
in context.

div1: CONJECTURE x /= y IMPLIES (x + y)/(x - y) /= 0

Natural numbers are a subtype of integers are a subtype of
rationals are a subtype of reals.
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Proof Obligations

Typechecking number props generates the proof obligation

% Subtype TCC generated (at line 6, column 44) for (x - y)

% proved - complete

div1_TCC1: OBLIGATION

FORALL (x, y: real): x /= y IMPLIES (x - y) /= 0;

Proof obligations arising from typechecking are called Type
Correctness Conditions (TCCs).
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Type Errors

Many type errors correspond to unprovable TCCs, and some TCCs
are provable, but surprising.

The standard definition of

(
n
k

)
is as shown

n: VAR nat

factorial(n): RECURSIVE posint =

(IF n = 0 THEN 1 ELSE n * factorial(n-1) ENDIF)

MEASURE n

n_choose_k(n, (k : upto(n))): posnat =

factorial(n) / (factorial(k) * factorial(n - k))

Typechecking generates the proof obligation

n_choose_k_TCC2: OBLIGATION

FORALL (n: nat, (k: upto(n))):

integer_pred(factorial(n) / (factorial(k) * factorial(n - k))) AND

factorial(n) / (factorial(k) * factorial(n - k)) >= 0 AND

factorial(n) / (factorial(k) * factorial(n - k)) > 0;

Natarajan Shankar Pragmatics of Formal Proof 23/38



Typing Judgements

Proof obligations can also be annoying, but typing judgements
allow type information to be cached and propagated.

px, py: VAR posreal

nnx, nny: VAR nonneg_real

nnreal_plus_nnreal_is_nnreal: JUDGEMENT

+(nnx, nny) HAS_TYPE nnreal

nnreal_times_nnreal_is_nnreal: JUDGEMENT

*(nnx, nny) HAS_TYPE nnreal

posreal_times_posreal_is_posreal: JUDGEMENT

*(px, py) HAS_TYPE posreal

Judgements can capture closure conditions (composition of
continuous functions is continuous) as well as implicit subtype
relationships.
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(Rank-invariant) Dependent Types

Dependent records have the form
[# l1 : T1, l2 : T2(l1), . . . , ln : TN(l1, . . . , ln−1) #].

finite_sequences [T: TYPE]: THEORY

BEGIN

finite_sequence: TYPE

= [# length: nat, seq: [below[length] -> T] #]

END finite_sequences

Dependent function types have the form [x : T1→T2(x)].

i, j: VAR nat

g91(i): nat = (IF i > 100 THEN i - 10 ELSE 91 ENDIF)

f91(i) : RECURSIVE {j | j = g91(i)}
= (IF i>100

THEN i-10

ELSE f91(f91(i+11))

ENDIF)

MEASURE (IF i>101 THEN 0 ELSE 101-i ENDIF)
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Theories

Tarski_Knaster [T : TYPE, @ : PRED[[T, T]], u : [set[T] -> T] ]

: THEORY

BEGIN

ASSUMING

x, y, z: VAR T

X, Y, Z : VAR set[T] %synonym for [T -> bool]

f, g : VAR [T -> T]

reflexivity: ASSUMPTION x @ x

antisymmetry: ASSUMPTION x @ y AND y @ x IMPLIES x = y

transitivity : ASSUMPTION x @ y AND y @ z IMPLIES x @ z

glb_is_lb: ASSUMPTION X(x) IMPLIES u(X) @ x

glb_is_glb: ASSUMPTION

(FORALL x: X(x) IMPLIES y @ x)

IMPLIES y @ u(X)
ENDASSUMING
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Tarski–Knaster Theorem

.

.

.

mono?(f): bool = (FORALL x, y: x @ y IMPLIES f(x) @ f(y))

lfp(f) : T = u(x | f(x) @ x)

fixpoint?(f)(x): bool =

(f(x) = x)

TK1: THEOREM

mono?(f) IMPLIES

lfp(f) = f(lfp(f))

END Tarski_Knaster

Monotone operators on complete lattices have fixed points. The
fixed point defined above can be shown to be the least such fixed
point.
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Theory Interpretations

Theories can be imported with or without explicit parameters.

Theories can also be interpreted by assigning interpretations
to uninterpreted symbols.

For example, a complete meet-semilattice L is actually a
complete lattice by interpreting L as L, @ as A (transpose of
@, and t as u (the meet of the upper bounds).
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Recursive Datatypes

A list datatype with constructors null and cons is declared as

list [T: TYPE]: DATATYPE

BEGIN

null: null?

cons (car: T, cdr:list):cons?

END list

The accessors for cons are car and cdr.

The recognizers are null? for null and cons? for
cons-terms.

The declaration generates a family of theories with the
datatype axioms, induction principles, and some useful
definitions.
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PVS Libraries (NASAlib)

Theorem Author
Cauchy-Schwarz Inequality Ricky Butler
Derivative of a Power Series Ricky Butler
Fundamental Theorem of Arithmetic Ricky Butler
Fundamental Theorem of Calculus Ricky Butler
Fundamental Theorem of Interval Arithmetic César Muñoz, A. Narkawicz
Inclusion Theorem of Interval Arithmetic César Muñoz, A. Narkawicz
Infinitude of Primes Ricky Butler
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PVS Libraries (NASAlib)

Theorem Author
Integral of a Power Series Ricky Butler
Intermediate Value Theorem Bruno Dutertre
Law of Cosines César Muñoz
Mean Value Theorem Bruno Dutertre
Mantel’s Theorem Aaron Dutle
Menger’s Theorem Jon Sjogren
Order of a Subgroup David Lester
Pythagorean Property - Sine and Cosine David Lester
Ramsey’s Theorem N. Shankar
Sum of a Geometric Series Ricky Butler
Taylor’s Theorem Ricky Butler
Trig Identities: Sum and Diff of Two Angles David Lester
Trig Identities: Double Angle Formulas David Lester
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PVS Libraries (NASAlib)

Theorem Author
Schroeder-Bernstein Theorem Jerry James
Denumerability of the Rational Numbers Jerry James
Heine Theorem and Multiary Variants Anthony Narkawicz
Fubini-Tonelli Lemmas David Lester
Knuth-Bendix Critical Pair Theorem André Galdino, Mauricio Ayala
Church-Rosser Theorem André Galdino, Mauricio Ayala
Newman Lemma André Galdino, Mauricio Ayala
Yokouchi Lemma André Galdino, Mauricio Ayala
Robinson Unification Andreia Avelar, Maurcio Ayala
Confluence of Orthogonal TRSs Ana Rocha, Mauricio Ayala
Sturm’s Theorem Anthony Narkawicz
Tarski’s Theorem Anthony Narkawicz, Aaron Dutle
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Toward Greater Expressiveness

Proof assistants like HOL, HOL Light, ProofPower, and
Isabelle/HOL are also based on classical higher-order logic,
but lack subtyping and dependent typing.
Nuprl and Coq are based on the propositions-as-types
interpretation.
In Coq,

Terms (proofs) can be applied to other terms.
Terms can be applied to types.
Types can depend on terms (dependent types).
Types can depend on types (polymorphic types).
Kinds (universes) can be applied to lesser kinds.

In Martin-Löf style type theories, for each type S , there is a
type (proposition) IdS(a, b) expressing the equality of two
terms a and b of type S .
Homotopy Type Theory builds an increasingly refined notion
of equality proofs depending on whether such proofs are
unique (propositions), the equality proofs of equality proofs
are unique (sets), and so on.
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Will Mathematicians Formalize their Arguments?

From Laurent Théry

Date: Thursday 20 September 2012, 20:24

Re: [Coqfinitgroup-commits] r4105 trunk

Hi,

Just for fun

Feit Thompson statement in Coq:

Theorem Feit_Thompson (gT : finGroupType) (G : group gT) :

odd #|G| -> solvable G.

How big it is:

Number of lines ~ 170 000

Number of definitions ~15 000

Number of theorems ~ 4 200

Fun ~ enormous!
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Can We Trust Automation?

. . . we ask whether this guarantee would be weakened by leaving the
mechanical verification to a machine. This is a very reasonable, relevant
and important question. It is related to proving the correctness of fairly
extensive computer programs, and checking the interpretation of the
specifications of those programs. And there is more: the hardware, the
operating system have to be inspected thoroughly, as well as the syntax,
the semantics and the compiler of the programming language. And even
if all this would be covered to satisfaction, there is the fear that a
computer might make errors without indicating them by total breakdown.

I do not see how we ever can get to an absolute guarantee. But one has

to admit that compared to human mechanical verification, computers are

superior in every respect. N. G. de Bruijn

HOL Light has a small kernel ( 500 lines) that has been
shown sound in a strengthened version of HOL Light

Some theorem provers have been verified down to hardware.
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Kernel of Truth
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Conclusions

The main value of a proof assistant is in the quality of
dialogue, not the certification of correct proofs.

Proof assistants can and should be used for developing new
mathematical results as well as understanding existing
mathematical developments.

Mathematicians can play with these assistants in the way that
chess grandmasters practice against chess programs.

The reductionist approach to foundations serves a purpose

It reduces mathematics to a small set of accepted beliefs.
It curbs runaway abstraction.

A pragmatic foundation should favor an abstractionist
approach to support generality and reuse.
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