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Interpolants

P _ (Q ^R) P _Q S =) (¬Q =) P )

An interpolant I for a pair of formulae A and B, where the validity

of A implies the validity of B, is a formula satisfying that: (i) A
implies I, (ii) I implies B, and (iii) the vocabulary condition that

the non-logical symbols in I occur in both A and B.

A logic has the interpolation property if every such A and B has

an interpolant.

Theorem. (Craig, 1957) First-order logic has the interpolation

property.



“In terms of reasoning, this is not at all surprising. If A 
involves apples and oranges, and B involves apples and 
bananas and A implies B, then A ought to imply a 
statement that involves only apples and B ought to follow 
from a statement that involves only apples. The oranges 
should not help and the bananas should not hurt.

So what is the mystery then? The Craig statement is 
trickier to prove than one might think. One has to have 
the same statement about apples for A and B! ”    

 -- Alessandra Carbone, Bulletin of the AMS, April ’97
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Dear Andreas,          
 
I would like to congratulate Cadence Research Labs on their 15th Anniversary. In these 15 years, Cadence 
Research Labs has worked at several frontiers of Electronic Design Automation. They focus on hard 
problems that when solved significantly push the state of the art forward.  They found novel solutions to 
system, synthesis and formal verification problems.  
 
Formal verification is the process of exhaustively validating that a logic entity behaves correctly. In 
contrast to testing-based approaches, which may expose flaws though generally cannot yield a proof of 
correctness, the exhaustiveness of formal verification ensures that no flaw will be left unexposed. Formal 
verification is thus a critical technology in many domains, being essential to safety-critical applications and 
to enable increased quality and reduced development costs of hardware and software systems.  The benefits 
of formal verification come at a substantial "cost": its exhaustiveness implies that it generally requires 
computational resources which grow exponentially with respect to the size of the entity being analyzed. 
Cadence Research Labs has had a fundamental role in the research and development of leading-edge formal 
verification technologies, which have been critical to increasing the scalability and applicability of formal 
verification techniques to an industrially relevant level.  
 
CRL made important contributions in satisfiability checking technologies and model checking algorithms. 
Satisfiability checking is arguably one of the most fundamental algorithms in computer-aided design, with 
pervasive application domains including verification. Members of Cadence Research labs are world-
recognized experts in the field of high-performance satisfiability solvers, and collectively have developed a 
set of solvers including MiniSAT, BerkMin, and Forklift which have won numerous competitions, been 
downloaded and used in thousands of applications, and have integrated novel tricks and ideas which have 
become the basis of countless other solvers.  
 
Model checking algorithms are widely used for verifying hardware and software models. CRL has 
pioneered numerous fundamental ideas and algorithms to this field, including "interpolation" as a 
satisfiability-based proof method which is often dramatically faster and more scalable than prior proof 
techniques. CBL researchers invented numerous novel methods to automatically reduce the domain of a 
verification problem through "abstracting" it based upon unsatisfiability proofs. These techniques have 
substantially increased the scalability of formal verification of complex hardware designs.  
 
CRL researchers have not only used logic optimizations to speed up formal verification algorithms, but are 
now also applying them to sequential optimization.  Sequential synthesis has long been a holy grail in logic 
optimization. A large part of the design space remains untapped unless one can reliably and effectively 
optimize and verify in the sequential domain. Recent progress from CRL shows that there is some promise 
we can tap into this some time in the not too distant future. 
 

Leon 
 
Leon Stok 
Director, 
Electronic Design Automation 
IBM Corporation 
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Interpolation Within Logic

1957 1960 1970 1980 1990 2000 2010

• Simpler proofs of known properties: Beth definability, Robinson’s theorem.
• Interpolant structure: Lyndon Interpolation theorems (1959).
• Preservation under homomorphisms (connections to finite-model theory).

• Many-sorted and Infinitary logics: Feferman ’68, ’74, Lopez-Escobar ’65, 
Barwise ’69, Stern ’75, Otto ’00.

• Model theoretic characterizations: See Makowsky ’85 for a survey.
• Amalgamation: See Czelakowski and Pigozzi ’95. 

• Guarded fragment: Hoogland, Marx, Otto ’00.
• Modal and fixed point logics: Maksimova ’79, ’91, Ten Cate ’05.
• Uniform interpolation: Pitt ’92, Visser ’96, d’Agostino, Hollenberg ’00.



Interpolation and Complexity Theory

1957 1960 1970 1980 1990 2000 2010

1971 1971, Cook. The Complexity of Theorem Proving Procedures

1982 Mundici, NP and Craig’s Interpolation Theorem (pub. 1984)

1983 Mundici, A Lower bound for the complexity of Craig’s Interpolants in Sentential Logic 

Theorem. (Mundici, 1982) At least one of the following is true.

1. P = NP.

2. NP 6= coNP.

3. For F and G in propositional logic, such that F =) G, an

interpolant is not computable in time polynomial in the size

of F and G.



1957 1960 1970 1980 1990 2000 2010

1997

Jan Krajíček, Interpolation theorems, lower bounds for proof systems, and independence results for 
bounded arithmetic.

1997

Pudlák, Lower Bounds for Resolution and Cutting Plane Proofs and Monotone Computations

Interpolation and (Proof) Complexity Theory

A proof system ` has feasible interpolation if, whenever there is a short

refutation of A ^ B, the interpolant is computable in polynomial time in

the size of the proof.

Lemma If there is a resolution refutation of size n for a formula A ^ B,

there is an interpolant of circuit size 3n that is computable in time n.



Interpolants in Automated Reasoning

1995 Huang, Constructing Craig Interpolation Formulas. (OTTER)

2001 Amir, McIlraith, Partition-Based Logical Reasoning.

2003 McMillan, Interpolation and SAT-Based Model Checking.

2004 Henziger, Jhala,Majumdar,McMillan, Abstractions from Proofs

2005 McMillan, An Interpolating Theorem Prover

1957 1960 1970 1980 1990 2000 2010
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A Fundamental Problem in Program Verification

int x = i;
int y = j;
while (foo()) {
// Code that does not
// modify x,y,i,j.
    x = y + 1;
    y = x + 1;
}
if (i = j && x <= 10)
 assert(y <= 10);

• The assertion checking problem.
• More generally, a safety property, 

of a discrete, state transition 
system can be reduced to 
reachability.

• Manual proof would use Hoare 
logic and invariants.



Bounded Execution as a Formula

int x = i;
int y = j;
while (foo()) {
// Code that does not
// modify x,y,i,j.
    x = y + 1;
    y = x + 1;
}
if (i = j && x <= 10)
 assert(y <= 10);

x0 = i and
y0 = j and 
x1 = y0 + 1 and
y1 = x0 + 1 and
x2 = y1 + 1 and
y2 = x1 + 1 and

x3 = y2 + 1 and
y3 = x2 + 1 and
(i = j and x3 <= 10) 
  implies (y3 > 10)



Empirical Progress in SAT Solving

Katebi, Sakallah, Marques-Silva, 2011



Empirical Progress in SAT Solving

Biere, 2011





Interpolants from Bounded Executions

x0 = i and
y0 = j and 
x1 = y0 + 1 and
y1 = x0 + 1 and
x2 = y1 + 1 and
y2 = x1 + 1 and

x3 = y2 + 1 and
y3 = x2 + 1 and
(i = j and x3 <= 10) 
  implies (y3 > 10)

A

B

• Interpolant is with respect to a theory.

• Computed from a proof produced by 
solver for the theory.

• After renaming, we have an invariant.

• Invariant generation typically involves 
a series of quantifier elimination 
steps, or fixed point computation.

i = j =) x2  y2



Analysis of a System with Interpolants

• A poor person’s quantifier elimination.

• Analysis algorithms involve repeated 
calls to a solver and repeated 
computation of invariants.

• Solvers: Efficient in practice contrary 
to theoretical expectations.

• Proof generation: Arose from theory to 
explain practice.

• Efficient interpolation: First studied in 
theory,  applied in practice, leading to 
more theory. 

System Property

Constraint 
Generation

Solver

Formula

UNSAT SAT
Satisfying

Assignment
Proofs,

Interpolants
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Terminology
Resolution

V ar Boolean variables: a1, a2, a3, . . .

Literal Variable or its negation: a, a,¬a

Clause Disjunction or set of literals: {a1, a2, a5}

CNF Formula Conjunction or set of clauses: {{a}, {a, b}}

a _ C D _ a

C _D

[Resolution]x z

y

⇤

x, y y, z

y
C _ x x _D

C _D

[Resolution]



Interpolating Proof Rules

A-Hyp
C [{` 2 C | var(`) 2 B}] [C 2 A]

A-Res
C _ x [I1] x _D [I2]

C _D [I1 _ I2]
(x 2 var(A) \ var(B))

B-Res
C _ x [I1] x _D [I2]

C _D [I1 ^ I2]
(x 2 var(B))

B-Hyp
C [>]

(C 2 B)

McMillan, 2003



Interpolating Proof Rules

A-Res
C _ x [I1] x _D [I2]

C _D [I1 _ I2]
(x 2 var(A) \ var(B))

B-Res
C _ x [I1] x _D [I2]

C _D [I1 ^ I2]
(x 2 var(B))

B-Hyp
C [>]

(C 2 B)

Annotate formulae with Partial Interpolants

Split rules based on vocabulary

McMillan, 2003

A-Hyp
C [{` 2 C | var(`) 2 B}] [C 2 A]



a1a2 [a2] a1a3 [a3]

a2 [a2]a2a3 [a2 _ a3]

a3 [a3 ^ a2]

a2a3 [>] a2a4 [>] a4 [>]

a2 [>]

a3 [>]

⇤ [a3 ^ a2]

(a) McMillan’s System

a1a2 [?] a1a3 [?]

a2 [?]a2a3 [?]

a3 [?]

a2a3 [>] a2a4 [>] a4 [>]

a2 [>]

a3 [>]

⇤ [a3]

(b) Symmetric System

Fig. 1. Refutation yielding di↵erent interpolants for di↵erent systems.

Definition 4 (McMillan’s System). McMillan’s system Itp
M

maps vertices
in an (A, B)-refutation R as to partial interpolants as defined below.

For an initial vertex v with `(v) = C

(A-clause) C [C|

B

] if C 2 A (B-clause) C [T] if C 2 B

For an internal vertex v with piv(v) = x, `(v+) = C1 _ x and `(v�) = C2 _ x

C1 _ x [I1] C2 _ x [I2]
C1 _ C2 [I3]

(A-Res) if x /2 Var(B), I3
def= I1 _ I2

(B-Res) if x 2 Var(B), I3
def= I1 ^ I2

See [11] for McMillan’s proof of correctness. Example 1 shows that the inter-
polants obtained from Itp

M

and Itp
S

are di↵erent and that Itp
M

is not symmetric.

Example 1. Let A be the formula (a1_a2)^ (a1_a3)^a2 and B be the formula
(a2 _ a3) ^ (a2 _ a4) ^ a4. An (A, B)-refutation R is shown in Figure 1. The
partial interpolants in McMillan’s system are shown in Figure 1(a) and those
in the symmetric system in Figure 1(b). We have that Itp

M

(R) = a3 ^ a2 and
Itp

S

(R) = a3. For the inverse systems, the interpolants are Itp0
M

(R) = a2 ^ a3

and Itp0
S

(R) = a3. Observe that Itp
M

(R) ) Itp
S

(R), Itp
S

(R) , ¬Itp0
S

(R), and
¬Itp0

S

(R)) ¬Itp0
M

(R). C
Example 2 below shows that there are interpolants that cannot be obtained

by these systems and that the interpolants from Itp
M

and Itp
S

may coincide.

Example 2. Let A be the formula a1^(a1_a2) and B be the formula (a1_a2)^a1.

Applying Interpolating Proof Rules
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I =
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B-Hyp
C [>]

A-Hyp
C [C|B ]

A-Res
C _ x [I1] x _D [I2]

C _D [I1 _ I2]

B-Res
C _ x [I1] x _D [I2]

C _D [I1 ^ I2]

A = (a1 _ a2) ^ (a1 _ a3) ^ a2

B = (a2 _ a3) ^ (a2 _ a4) ^ a4

I =



a1a2 [a2] a1a3 [a3]

a2 [a2]a2a3 [a2 _ a3]

a3 [a3 ^ a2]

a2a3 [>] a2a4 [>] a4 [>]

a2 [>]

a3 [>]

⇤ [a3 ^ a2]

(a) McMillan’s System

a1a2 [?] a1a3 [?]

a2 [?]a2a3 [?]

a3 [?]

a2a3 [>] a2a4 [>] a4 [>]

a2 [>]

a3 [>]

⇤ [a3]

(b) Symmetric System

Fig. 1. Refutation yielding di↵erent interpolants for di↵erent systems.

Definition 4 (McMillan’s System). McMillan’s system Itp
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For an initial vertex v with `(v) = C
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C1 _ C2 [I3]

(A-Res) if x /2 Var(B), I3
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(B-Res) if x 2 Var(B), I3
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See [11] for McMillan’s proof of correctness. Example 1 shows that the inter-
polants obtained from Itp

M

and Itp
S

are di↵erent and that Itp
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in the symmetric system in Figure 1(b). We have that Itp
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(R) = a3. Observe that Itp
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Example 2. Let A be the formula a1^(a1_a2) and B be the formula (a1_a2)^a1.

Applying Interpolating Proof Rules
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A-Hyp
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A-Res
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C _D [I1 _ I2]

B-Res
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C _D [I1 ^ I2]



B-Res
C _ x [I1] x _D [I2]

C _D [I1 ^ I2]
[x 2 var(B)\ var(A)]

A Symmetric Construction

A-Res
C _ x [I1] x _D [I2]

C _D [I1 _ I2]
(x 2 var(A) \ var(B))

B-Hyp
C [>]

(C 2 B)A-Hyp
C [?]

[C 2 A]

AB-Res
C _ x [I1] x _D [I2]

C _D [(x _ I1) ^ (x _ I2)]
(x 2 var(B) \ var(A))

Huang 1995, Krajíček;Pudlák 1997
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Definition 4 (McMillan’s System). McMillan’s system Itp
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in an (A, B)-refutation R as to partial interpolants as defined below.

For an initial vertex v with `(v) = C
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] if C 2 A (B-clause) C [T] if C 2 B

For an internal vertex v with piv(v) = x, `(v+) = C1 _ x and `(v�) = C2 _ x
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C1 _ C2 [I3]
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(B-Res) if x 2 Var(B), I3
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See [11] for McMillan’s proof of correctness. Example 1 shows that the inter-
polants obtained from Itp

M

and Itp
S

are di↵erent and that Itp
M

is not symmetric.

Example 1. Let A be the formula (a1_a2)^ (a1_a3)^a2 and B be the formula
(a2 _ a3) ^ (a2 _ a4) ^ a4. An (A, B)-refutation R is shown in Figure 1. The
partial interpolants in McMillan’s system are shown in Figure 1(a) and those
in the symmetric system in Figure 1(b). We have that Itp

M

(R) = a3 ^ a2 and
Itp

S

(R) = a3. For the inverse systems, the interpolants are Itp0
M

(R) = a2 ^ a3

and Itp0
S

(R) = a3. Observe that Itp
M

(R) ) Itp
S

(R), Itp
S

(R) , ¬Itp0
S

(R), and
¬Itp0

S

(R)) ¬Itp0
M

(R). C
Example 2 below shows that there are interpolants that cannot be obtained

by these systems and that the interpolants from Itp
M

and Itp
S

may coincide.

Example 2. Let A be the formula a1^(a1_a2) and B be the formula (a1_a2)^a1.

An Interpolant from the Symmetric Construction

B-Res
C _ x [I1] x _D [I2]

C _D [I1 ^ I2]
[x 2 var(B)\ var(A)]

A-Res
C _ x [I1] x _D [I2]

C _D [I1 _ I2]
(x 2 var(A) \ var(B))

A-Hyp
C [?]

[C 2 A]

AB-Res
C _ x [I1] x _D [I2]

C _D [(x _ I1) ^ (x _ I2)]
(x 2 var(B) \ var(A))

B-Hyp
C [>]

(C 2 B)



What other constructions are there?

B-Hyp
C [>]

A-Hyp
C [C|B ]

A-Res
C _ x [I1] x _D [I2]

C _D [I1 _ I2]

B-Res
C _ x [I1] x _D [I2]

C _D [I1 ^ I2]

B-Res
C _ x [I1] x _D [I2]

C _D [I1 ^ I2]
[x 2 var(B)\ var(A)]

A-Res
C _ x [I1] x _D [I2]

C _D [I1 _ I2]
(x 2 var(A) \ var(B))

A-Hyp
C [?]

[C 2 A]

AB-Res
C _ x [I1] x _D [I2]

C _D [(x _ I1) ^ (x _ I2)]
(x 2 var(B) \ var(A))

B-Hyp
C [>]

(C 2 B)

?



What other constructions are there?

B-Hyp
C [>]

A-Hyp
C [C|B ]

A-Res
C _ x [I1] x _D [I2]

C _D [I1 _ I2]

B-Res
C _ x [I1] x _D [I2]

C _D [I1 ^ I2]

B-Res
C _ x [I1] x _D [I2]

C _D [I1 ^ I2]
[x 2 var(B)\ var(A)]

A-Res
C _ x [I1] x _D [I2]

C _D [I1 _ I2]
(x 2 var(A) \ var(B))

A-Hyp
C [?]

[C 2 A]

AB-Res
C _ x [I1] x _D [I2]

C _D [(x _ I1) ^ (x _ I2)]
(x 2 var(B) \ var(A))

B-Hyp
C [>]

(C 2 B)

A-Res
C _ x [I1] x _D [I2]

C _D [I1 _ I2]

B-Res
C _ x [I1] x _D [I2]

C _D [I1 ^ I2]

A-Hyp
C [?]

B-Hyp
C [¬C|A]



Labelled Formulae

;

A B

AB

x1x2

x1 x2 x1 x2 x1 x2 x1 x2

x1 x2 x1 x2

x1x2

· · · · · ·

Colours : S def
= {;,A,B,AB}

Coloured clauses: C ! S, a lattice under point-wise order.
Coloured CNF: Set of coloured clauses.

;

A B

AB

x1x2

x1 x2 x1 x2 x1 x2 x1 x2

x1 x2 x1 x2

x1x2

· · · · · ·

Colours : S def
= {;,A,B,AB}

Coloured clauses: C ! S, a lattice under point-wise order.
Coloured CNF: Set of coloured clauses.



Deduction and Interpolation with Labels

Let �(x) be the colour of a literal x.

C|A = {x 2 C | �(x) v A}

A-Hyp
C [C|B]

C 2 A B-Hyp
C [C|A]

C 2 B

A-Res
C _ x [I1] x _D [I2]

C _D [I1 _ I2]
(�(x) t �(x) = A)

B-Res
C _ x [I1] x _D [I2]

C _D [I1 ^ I2]
(�(x) t �(x) = B)

AB-Res
C _ x [I1] x _D [I2]

C _D [(x _ I1) ^ (I2 _ x)]
(�(x) t �(x) = AB)

D’Silva, Kroening, Purandare, Weissenbacher, 2010



A = a1 ^ (a1 _ a2)

B = a1 ^ (a1 _ a2)

I = a2

Applying the Labelled Interpolation System
A

def

= (a1) ^ (a1 _ a2) B

def

= (a1 _ a2) ^ (a1)

a1 [?] a1a2 [?] a1 a2 [>] a1 [>]

a2 [>]

a1 [(a2 _ ?) ^ (> _ a2)]

⇤ [a2]

This interpolant cannot be derived with previous algorithms.

I1 _ I2 if �(x) t �(x) = A

(x _ I1) ^ (I2 _ x) if �(x) t �(x) = AB

I1 ^ I2 if �(x) t �(x) = B

I =



Correctness

A colouring of A ^B is locality preserving if
Every literal in the formula has a non-empty colour,
every literal occurring only in A is coloured A, and
every literal occurring only in B is coloured B.

Var(A) \Var(B) Var(A) \Var(B) Var(B) \Var(A)

A B

A or AB or B

Theorem. If A^B is unsatisfiable and has a locality preserving colour-

ing, ⇤ [I] is derivable and I an interpolant for A and B.

Proof adapts an invariant from: A Combination Method for Generating In-

terpolants, Yorsh and Musuvathi, Conference on Automated Deduction, 2005.



It’s all in the colour

B-Hyp
C [>]

A-Hyp
C [C|B ]

A-Res
C _ x [I1] x _D [I2]

C _D [I1 _ I2]

B-Res
C _ x [I1] x _D [I2]

C _D [I1 ^ I2]

B-Res
C _ x [I1] x _D [I2]

C _D [I1 ^ I2]
[x 2 var(B)\ var(A)]

A-Res
C _ x [I1] x _D [I2]

C _D [I1 _ I2]
(x 2 var(A) \ var(B))

A-Hyp
C [?]

[C 2 A]

AB-Res
C _ x [I1] x _D [I2]

C _D [(x _ I1) ^ (x _ I2)]
(x 2 var(B) \ var(A))

B-Hyp
C [>]

(C 2 B)

A-Res
C _ x [I1] x _D [I2]

C _D [I1 _ I2]

B-Res
C _ x [I1] x _D [I2]

C _D [I1 ^ I2]

A-Hyp
C [?]

B-Hyp
C [¬C|A]

Var(A) \Var(B)

Var(A) \Var(B)

Var(B) \Var(A)

Var(A) \Var(B)

Var(A) \Var(B)

Var(B) \Var(A)

Var(A) \Var(B)

Var(A) \Var(B)

Var(B) \Var(A)

Var(A) \Var(B)

Var(A) \Var(B)

Var(B) \Var(A)

Var(A) \Var(B)

Var(A) \Var(B)

Var(B) \Var(A)

Var(A) \Var(B)

Var(A) \Var(B)

Var(B) \Var(A)

Var(A) \Var(B)

Var(A) \Var(B)

Var(B) \Var(A)

Var(A) \Var(B)

Var(A) \Var(B)

Var(B) \Var(A)

Var(A) \Var(B)

Var(A) \Var(B)

Var(B) \Var(A)



But why those constructions?
What is special about existing algorithms?

A colouring is partitioning if all occurrences of a variable have
the same colour.

a1 a1a2 a1 a2 a1

a1 a1a2 a1a2 a1

a1 a1 a2 a1 a2 a1

Abstraction: Every colouring is contained in a partitioning one.
Different partitions define different abstract domains.

A colouring is partitioning if ev-

ery instance of a variable has the

same colour.



But why those constructions?
What is special about existing algorithms?

A colouring is partitioning if all occurrences of a variable have
the same colour.

a1 a1a2 a1 a2 a1

a1 a1a2 a1a2 a1

a1 a1 a2 a1 a2 a1

Abstraction: Every colouring is contained in a partitioning one.
Different partitions define different abstract domains.

Var(A) \Var(B)

Var(A) \Var(B)

Var(B) \Var(A)

Var(A) \Var(B)

Var(A) \Var(B)

Var(B) \Var(A)

Var(A) \Var(B)

Var(A) \Var(B)

Var(B) \Var(A)

Var(A) \Var(B)

Var(A) \Var(B)

Var(B) \Var(A)

Var(A) \Var(B)

Var(A) \Var(B)

Var(B) \Var(A)

Var(A) \Var(B)

Var(A) \Var(B)

Var(B) \Var(A)

Var(A) \Var(B)

Var(A) \Var(B)

Var(B) \Var(A)

Var(A) \Var(B)

Var(A) \Var(B)

Var(B) \Var(A)

Var(A) \Var(B)

Var(A) \Var(B)

Var(B) \Var(A)

A colouring is partitioning if ev-

ery instance of a variable has the

same colour.

Theorem. There is a unique, coarsest partition that admits exactly three,

locality preserving colourings.



Interpolant Strength

Var(A) \Var(B)

Var(A) \Var(B)

Var(B) \Var(A)

Var(A) \Var(B)

Var(A) \Var(B)

Var(B) \Var(A)

Var(A) \Var(B)

Var(A) \Var(B)

Var(B) \Var(A)

Var(A) \Var(B)

Var(A) \Var(B)

Var(B) \Var(A)

Var(A) \Var(B)

Var(A) \Var(B)

Var(B) \Var(A)

Var(A) \Var(B)

Var(A) \Var(B)

Var(B) \Var(A)

Var(A) \Var(B)

Var(A) \Var(B)

Var(B) \Var(A)

Var(A) \Var(B)

Var(A) \Var(B)

Var(B) \Var(A)

Var(A) \Var(B)

Var(A) \Var(B)

Var(B) \Var(A)

B

I1 ^ I2

AB

(x _ I1) ^ (I2 _ x)

A

I1 _ I2

*

*

Order colours by strength of the formulae obtained.
Lift point-wise to an order on coloured clauses.

The strength order is B v AB v A.

Coloured clauses and CNF are ordered

pointwise by the strength order.

Theorem. The set of locality-preserving colourings forms a complete

lattice with respect to the strength order.

=) =)



Additional Analysis

• Colourings can be ordered by variable occurrence, which correlates loosely 
with interpolant size.

• There is a dual operation on the lattice of colours, which lifts pointwise so that 
every interpolation construction has a dual.

• Sharygina et al. proved results on labelled interpolation applied in the context 
of reachability analysis.

• Jhala and McMillan, 2006 and Albarghouthi and McMillan, 2013 study 
additional restrictions on the vocabulary condition.
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Architecture of a Modern Solver

Theory

Theory

Combination EUF

Boolean Structure

Quantifiers

This talk



Equality Proofs

f(u, y) = z u = x v = y
f(x, v) 6= z

f(u, y) 6= z

⇤

• Deduced literals may not be in A or in B

• New terms may use non-shared symbols

• Interpolant may be over terms not in the proof

A = u = x ^ f(u, y) = z

B = v = y ^ f(x, v) 6= z

I = f(x, y) = z

f(u, y) = f(x, v)



Coloured Congruence Graphs

f(u, y) = z u = x v = y
f(x, v) 6= z

⇤

A = u = x ^ f(u, y) = z

B = v = y ^ f(x, v) 6= z

I = f(x, y) = z

f(x, y) = z

f(x, v) = z

z

f(u, y)

f(x, y)

f(x, v)

6=



Theory

Theory

Combination EUF

Boolean Structure

Quantifiers

Recursion

Loops

Conditionals/
Assignments

Data Types

(Relative) 
Completeness

Generalization

Path Sharing 

Property Checking
with Interpolants

Binary Interpolant

Sequence Interpolants

Tree Interpolants

DAG Interpolants



Propositional Interpolants

1995 Huang, Constructing Craig Interpolation Formulas. (OTTER)

1997
Jan Krajíček, Interpolation theorems, lower bounds for proof systems, and independence results for 
bounded arithmetic.

1997 Pudlák, Lower Bounds for Resolution and Cutting Plane Proofs and Monotone Computations

2003 McMillan, Interpolation and SAT-Based Model Checking.

2006 Yorsh, Musuvathi, A Combination Method for Generating Interpolants.

2009 Biere, Bounded Model Checking (in Handbook of Satisfiability).

2010 D. Kroening, Purandare, Weissenbacher. Interpolant Strength.



Equality Interpolants

1996 Fitting, First-Order Logic and Automated Theorem Proving

2005 McMillan, An Interpolating Theorem Prover

2006 Yorsh, Musuvathi, A Combination Method for Generating Interpolants.

2009 Fuchs, Goel, Grundy, Krstic, Tinelli, Ground Interpolation for the Theory of Equality.

2014 Bonacina, Johansson, Interpolation Systems for Ground Proofs in Automated Reasoning



Interpolation in Theories

2005 McMillan. Interpolating Theorem Prover LA(Q)

2006 Kapur, Majumdar, Zarba, Interpolation for Data Structures Datatype theories

2007 Rybalchenko, Sofronie-Stokkermans, Constraint Solving for Interpolation LA(Q)

2008 Cimatti, Griggio, Sebastiani, Efficient Interpolant Generation in Satisfiability 
Modulo Theories LA(Q), DL(Q), UTVPI

2008 Jain, Clarke, Grumberg, Efficient Craig Interpolation for Linear Diophantine 
(dis)Equations and Linear Modular Equations LDE, LME

2009 Cimatti, Griggio, Sebastiani, Interpolant Generation for UTVPI UTVPI

2011 Griggio, Effective Word-Level Interpolation for Software Verification Bit-Vectors



Interpolation in Theory Combinations

2005 McMillan. Interpolating Theorem Prover LA(Q) over EUF over Bool

2005 Yorsh and Musuvathi, A Combination Method for Generating Interpolants Nelson-Oppen

2009 Cimatti, Griggio, Sebastiani, Efficient Generation of Craig Interpolants in 
Satisfiability Modulo Theories

Delayed Theory 
Combination

2009 Goel, Krstic, Tinelli, Ground Interpolation for Combined Theories Proof transformation

2012 Kovacs, Voronkov, Playing in the Gray Area of Proofs Proof Transformation


