100 year old story
100 year old story

1910’s:

Hausdorff gave an abstract definition of space by means of neighborhood systems of points of the space. Brouwer started developing grounds for rejecting classical reasoning in favor of constructive reasoning. Lewis suggested to resolve the paradoxes of material implication by introducing strict implication. This resulted in a number of logical systems, fourth of which will play a prominent role in our story.
100 year old story

1910’s:

- **Hausdorff** gave an abstract definition of space by means of neighborhood systems of points of the space.
100 year old story

1910’s:

- **Hausdorff** gave an abstract definition of space by means of neighborhood systems of points of the space.
- **Brouwer** started developing grounds for rejecting classical reasoning in favor of constructive reasoning.
100 year old story

1910’s:

- **Hausdorff** gave an abstract definition of space by means of neighborhood systems of points of the space.
- **Brouwer** started developing grounds for rejecting classical reasoning in favor of constructive reasoning.
- **Lewis** suggested to resolve the paradoxes of material implication by introducing strict implication.
100 year old story

1910’s:

- **Hausdorff** gave an abstract definition of space by means of neighborhood systems of points of the space.
- **Brouwer** started developing grounds for rejecting classical reasoning in favor of constructive reasoning.
- **Lewis** suggested to resolve the paradoxes of material implication by introducing strict implication. This resulted in a number of logical systems, fourth of which will play a prominent role in our story.
100 year old story
100 year old story

1920’s:

Kuratowski gave the first pointfree definition of a topological space by means of a closure operator on the powerset. Alexandroff gave another, now widely accepted, pointfree definition of a topological space by means of open sets. Several attempts were made to analyze carefully Brouwer’s new logic (Kolmogorov, Glivenko, Heyting).
100 year old story

1920’s:

- Kuratowski gave the first pointfree definition of a topological space by means of a closure operator on the powerset.
1920’s:

- **Kuratowski** gave the first pointfree definition of a topological space by means of a *closure operator* on the powerset.
- **Alexandroff** gave another, now widely accepted, pointfree definition of a topological space by means of *open sets*.
100 year old story

1920’s:

- Kuratowski gave the first pointfree definition of a topological space by means of a closure operator on the powerset.
- Alexandroff gave another, now widely accepted, pointfree definition of a topological space by means of open sets.
- Several attempts were made to analyze carefully Brouwer’s new logic
100 year old story

1920’s:

- Kuratowski gave the first pointfree definition of a topological space by means of a closure operator on the powerset.
- Alexandroff gave another, now widely accepted, pointfree definition of a topological space by means of open sets.
- Several attempts were made to analyze carefully Brouwer’s new logic (Kolmogorov, Glivenko, Heyting).
The beginning of the program

1930's:
Gödel defined a translation of intuitionistic logic into modal logic, which allowed to view intuitionistic logic as a fragment of S4 (Lewis' fourth system).
Stone and Tarski gave a topological representation of algebras associated with intuitionistic logic. This resulted in Tarski's topological interpretation of intuitionistic logic.

1940's:
McKinsey and Tarski introduced closure algebras as an algebraic language for topological spaces. They proved that every closure algebra can be represented as a subalgebra of the powerset algebra equipped with topological closure. This resulted in topological interpretation of modal logic. As a consequence of the two representation theorems, they proved that Gödel's translation is full and faithful.
The beginning of the program

1930’s:

- Gödel defined a translation of intuitionistic logic into modal logic, which allowed to view intuitionistic logic as a fragment of S4 (Lewis’ fourth system).

1940’s:

- McKinsey and Tarski introduced closure algebras as an algebraic language for topological spaces.
- They proved that every closure algebra can be represented as a subalgebra of the powerset algebra equipped with topological closure.
- This resulted in topological interpretation of modal logic.
- As a consequence of the two representation theorems, they proved that Gödel’s translation is full and faithful.
The beginning of the program

1930’s:

- **Gödel** defined a translation of intuitionistic logic into modal logic, which allowed to view intuitionistic logic as a fragment of **S4** (Lewis’ fourth system).
- **Stone** and **Tarski** gave a topological representation of algebras associated with intuitionistic logic.
The beginning of the program
1930’s:

- **Gödel** defined a translation of intuitionistic logic into modal logic, which allowed to view intuitionistic logic as a fragment of **S4** (Lewis’ fourth system).
- **Stone** and **Tarski** gave a topological representation of algebras associated with intuitionistic logic.
- This resulted in Tarski’s topological interpretation of intuitionistic logic.
The beginning of the program

1930’s:

- Gödel defined a translation of intuitionistic logic into modal logic, which allowed to view intuitionistic logic as a fragment of S4 (Lewis’ fourth system).
- Stone and Tarski gave a topological representation of algebras associated with intuitionistic logic.
- This resulted in Tarski’s topological interpretation of intuitionistic logic.

1940’s:
The beginning of the program

1930’s:

- **Gödel** defined a translation of intuitionistic logic into modal logic, which allowed to view intuitionistic logic as a fragment of **S4** (Lewis’ fourth system).
- **Stone** and **Tarski** gave a topological representation of algebras associated with intuitionistic logic.
- This resulted in Tarski’s topological interpretation of intuitionistic logic.

1940’s:

- **McKinsey** and **Tarski** introduced closure algebras as an algebraic language for topological spaces.
The beginning of the program

1930’s:

- Gödel defined a translation of intuitionistic logic into modal logic, which allowed to view intuitionistic logic as a fragment of S4 (Lewis’ fourth system).
- Stone and Tarski gave a topological representation of algebras associated with intuitionistic logic.
- This resulted in Tarski’s topological interpretation of intuitionistic logic.

1940’s:

- McKinsey and Tarski introduced closure algebras as an algebraic language for topological spaces.
- They proved that every closure algebra can be represented as a subalgebra of the powerset algebra equipped with topological closure.
The beginning of the program

1930’s:

- Gödel defined a translation of intuitionistic logic into modal logic, which allowed to view intuitionistic logic as a fragment of S4 (Lewis’ fourth system).
- Stone and Tarski gave a topological representation of algebras associated with intuitionistic logic.
- This resulted in Tarski’s topological interpretation of intuitionistic logic.

1940’s:

- McKinsey and Tarski introduced closure algebras as an algebraic language for topological spaces.
- They proved that every closure algebra can be represented as a subalgebra of the powerset algebra equipped with topological closure.
- This resulted in topological interpretation of modal logic.
The beginning of the program

1930’s:

- Gödel defined a translation of intuitionistic logic into modal logic, which allowed to view intuitionistic logic as a fragment of S4 (Lewis’ fourth system).
- Stone and Tarski gave a topological representation of algebras associated with intuitionistic logic.
- This resulted in Tarski’s topological interpretation of intuitionistic logic.

1940’s:

- McKinsey and Tarski introduced closure algebras as an algebraic language for topological spaces.
- They proved that every closure algebra can be represented as a subalgebra of the powerset algebra equipped with topological closure.
- This resulted in topological interpretation of modal logic.
- As a consequence of the two representation theorems, they proved that Gödel’s translation is full and faithful.
Algebras of topology

- Alexandroff way: $X \mapsto \Omega(X) = \text{the algebra of all opens of } X$.
- Kuratowski way: $X \mapsto (\mathcal{P}(X), \text{cl}) = \text{the powerset algebra equipped with topological closure}$.

The two are closely related: $\Omega(X)$ is the fixpoints of the interior operator int on $\mathcal{P}(X)$, which is dual to cl.
Algebras of topology

Alexandroff way:
Algebras of topology

Alexandroff way:

\[X \text{ a topological space} \rightarrow \Omega(X) = \text{the algebra of all opens of } X. \]
Algebras of topology

Alexandroff way:

X a topological space $\mapsto \Omega(X) =$ the algebra of all opens of X.

Kuratowski way:
Algebras of topology

Alexandroff way:

X a topological space $\mapsto \Omega(X)$ = the algebra of all opens of X.

Kuratowski way:

$X \mapsto (\wp(X), \text{cl})$ = the powerset algebra equipped with topological closure.
Algebras of topology

Alexandroff way:

X a topological space $\mapsto \Omega(X) = \text{the algebra of all opens of } X$.

Kuratowski way:

$X \mapsto (\wp(X), \text{cl}) = \text{the powerset algebra equipped with topological closure.}$

The two are closely related:
Algebras of topology

Alexandroff way:

X a topological space $\mapsto \Omega(X) =$ the algebra of all opens of X.

Kuratowski way:

$X \mapsto (\wp(X), \text{cl}) =$ the powerset algebra equipped with topological closure.

The two are closely related: $\Omega(X)$ is the fixpoints of the interior operator int on $\wp(X)$, which is dual to cl.
Closure algebras

McKinsey-Tarski (1944):

A closure algebra is a pair (B, c), where B is a Boolean algebra and $c : B \to B$ satisfies Kuratowski's axioms:

1. $c(0) = 0$
2. $a \leq c(a)$
3. $cc(a) \leq c(a)$
4. $c(a \lor b) = c(a) \lor c(b)$

Let $i : B \to B$ be the interior operator dual to c, that is, $i(a) = -c(-a)$.

Then $H := \{i(a) : a \in B\}$ is a Heyting algebra.

Heyting algebra = bounded distributive lattice in which \land has residual \to:

$a \land x \leq b$ iff $x \leq a \to b$.
Closure algebras

McKinsey-Tarski (1944):

A closure algebra is a pair \((B, c)\), where \(B\) is a Boolean algebra and \(c : B \to B\) satisfies Kuratowski's axioms:

1. \(c(0) = 0\)
2. \(a \leq c(a)\)
3. \(c(a \land b) \leq c(a) \land c(b)\)
4. \(c(a \lor b) = c(a) \lor c(b)\)

Let \(i : B \to B\) be the interior operator dual to \(c\); that is, \(i(a) = -c(-a)\).

Then \(H := \{i(a) : a \in B\}\) is a Heyting algebra.

Heyting algebra = bounded distributive lattice in which \(\land\) has residual \(\to\):

\(a \land x \leq b\) iff \(x \leq a \to b\)
Closure algebras

McKinsey-Tarski (1944):

A closure algebra is a pair \((B, c)\), where \(B\) is a Boolean algebra and \(c : B \to B\) satisfies Kuratowski’s axioms:

1. \(c(0) = 0\)
2. \(a \leq c(a)\)
3. \(c(c(a)) \leq c(a)\)
4. \(c(a \lor b) = c(a) \lor c(b)\)

Let \(i : B \to B\) be the interior operator dual to \(c\); that is, \(i(a) = -c(-a)\).

Then \(H := \{i(a) : a \in B\}\) is a Heyting algebra.

Heyting algebra = bounded distributive lattice in which \(\land\) has residual \(\to\):

\(a \land x \leq b\) iff \(x \leq a \to b\)
Closure algebras

McKinsey-Tarski (1944):

A closure algebra is a pair \((B, c)\), where \(B\) is a Boolean algebra and \(c : B \to B\) satisfies Kuratowski’s axioms:

1. \(c0 = 0\)
Closure algebras

McKinsey-Tarski (1944):

A closure algebra is a pair \((B, c)\), where \(B\) is a Boolean algebra and \(c : B \to B\) satisfies Kuratowski’s axioms:

1. \(c0 = 0\)
2. \(a \leq ca\)

Let \(i : B \to B\) be the interior operator dual to \(c\); that is, \(i_a = -c - a\).

Then \(H := \{i_a : a \in B\}\) is a Heyting algebra.

Heyting algebra = bounded distributive lattice in which \(\land\) has residual \(\rightarrow\):

\(a \land x \leq b\) iff \(x \leq a \to b\).
Closure algebras

McKinsey-Tarski (1944):

A closure algebra is a pair \((B, c)\), where \(B\) is a Boolean algebra and \(c : B \to B\) satisfies Kuratowski’s axioms:

1. \(c0 = 0\)
2. \(a \leq ca\)
3. \(cca \leq ca\)
Closure algebras

McKinsey-Tarski (1944):

A closure algebra is a pair \((B, c)\), where \(B\) is a Boolean algebra and \(c : B \rightarrow B\) satisfies Kuratowski’s axioms:

1. \(c0 = 0\)
2. \(a \leq ca\)
3. \(cca \leq ca\)
4. \(c(a \lor b) = ca \lor cb\)
Closure algebras

McKinsey-Tarski (1944):

A closure algebra is a pair \((B, c)\), where \(B\) is a Boolean algebra and \(c : B \rightarrow B\) satisfies Kuratowski’s axioms:

1. \(c0 = 0\)
2. \(a \leq ca\)
3. \(cc\ a \leq ca\)
4. \(c(a \lor b) = ca \lor cb\)

Let \(i : B \rightarrow B\) be the interior operator dual to \(c\);
Closure algebras

McKinsey-Tarski (1944):

A closure algebra is a pair \((B, c)\), where \(B\) is a Boolean algebra and \(c : B \to B\) satisfies Kuratowski’s axioms:

1. \(c0 = 0\)
2. \(a \leq ca\)
3. \(cca \leq ca\)
4. \(c(a \lor b) = ca \lor cb\)

Let \(i : B \to B\) be the interior operator dual to \(c\); that is, \(ia = -c - a\).
Closure algebras

McKinsey-Tarski (1944):

A closure algebra is a pair \((B, \mathbf{c})\), where \(B\) is a Boolean algebra and \(\mathbf{c} : B \to B\) satisfies Kuratowski’s axioms:

1. \(\mathbf{c}0 = 0\)
2. \(a \leq \mathbf{c}a\)
3. \(\mathbf{c}\mathbf{c}a \leq \mathbf{c}a\)
4. \(\mathbf{c}(a \lor b) = \mathbf{c}a \lor \mathbf{c}b\)

Let \(\mathbf{i} : B \to B\) be the interior operator dual to \(\mathbf{c}\); that is, \(\mathbf{i}a = -\mathbf{c} - a\).

Then \(H := \{\mathbf{i}a : a \in B\}\) is a Heyting algebra.
Closure algebras

McKinsey-Tarski (1944):

A closure algebra is a pair \((B, c)\), where \(B\) is a Boolean algebra and \(c : B \to B\) satisfies Kuratowski’s axioms:

1. \(c0 = 0\)
2. \(a \leq ca\)
3. \(cca \leq ca\)
4. \(c(a \lor b) = ca \lor cb\)

Let \(i : B \to B\) be the interior operator dual to \(c\); that is, \(ia = -c - a\).

Then \(H := \{ia : a \in B\}\) is a Heyting algebra.

Heyting algebra = bounded distributive lattice in which \(\land\) has residual \(\to\):
Closure algebras

McKinsey-Tarski (1944):

A closure algebra is a pair \((B, c)\), where \(B\) is a Boolean algebra and \(c : B \to B\) satisfies Kuratowski’s axioms:

1. \(c0 = 0\)
2. \(a \leq ca\)
3. \(cca \leq ca\)
4. \(c(a \lor b) = ca \lor cb\)

Let \(i : B \to B\) be the interior operator dual to \(c\); that is, \(ia = -c - a\).

Then \(H := \{ia : a \in B\}\) is a Heyting algebra.

Heyting algebra = bounded distributive lattice in which \(\land\) has residual \(\to\):

\[a \land x \leq b \iff x \leq a \to b\]
Thus, the open elements of a closure algebra form a Heyting algebra. Is every Heyting algebra represented this way? The answer is yes, and this is at the heart of seeing that the Gödel translation is full and faithful.

To see this, it is convenient to first discuss representation of closure algebras and Heyting algebras. These representations generalize the celebrated Stone representation of Boolean algebras.
Thus, the open elements of a closure algebra form a Heyting algebra.
Representation

Thus, the open elements of a closure algebra form a Heyting algebra. Is every Heyting algebra represented this way?
Thus, the open elements of a closure algebra form a Heyting algebra. Is every Heyting algebra represented this way?

The answer is yes, and this is at the heart of seeing that the Gödel translation is full and faithful.
Thus, the open elements of a closure algebra form a Heyting algebra. Is every Heyting algebra represented this way?

The answer is yes, and this is at the heart of seeing that the Gödel translation is full and faithful.

To see this, it is convenient to first discuss representation of closure algebras and Heyting algebras.
Thus, the open elements of a closure algebra form a Heyting algebra. Is every Heyting algebra represented this way?

The answer is yes, and this is at the heart of seeing that the Gödel translation is full and faithful.

To see this, it is convenient to first discuss representation of closure algebras and Heyting algebras. These representations generalize the celebrated Stone representation of Boolean algebras.
For a Boolean algebra B, let $X := \{\text{ultrafilters of } B\}$ be the ultrafilters of B. Define $\beta : B \rightarrow \mathcal{P}(X)$ by $\beta(a) = \{x \in X \mid a \in x\}$.

Then $\beta : B \rightarrow \mathcal{P}(\mathcal{B})$ is a Boolean embedding. Moreover, $\{\beta(a) \mid a \in B\}$ is a basis of a Stone topology (compact Hausdorff zero-dimensional topology) on X. Furthermore, B is isomorphic to the Boolean algebra of clopens ($=\text{closed and open sets}$) of this topology.
For a Boolean algebra B, let $X := \text{uf}(B)$ be the ultrafilters of B.
Stone representation of Boolean algebras

For a Boolean algebra B, let $X := \text{uf}(B)$ be the ultrafilters of B. Define $\beta : B \rightarrow \wp(X)$ by

$$\beta(a) = \{x \in X \mid a \in x\}$$
For a Boolean algebra B, let $X := \text{uf}(B)$ be the ultrafilters of B. Define $\beta : B \rightarrow \mathcal{P}(X)$ by

$$\beta(a) = \{x \in X \mid a \in x\}$$

Then $\beta : B \rightarrow \mathcal{P}(B)$ is a Boolean embedding.
Stone representation of Boolean algebras

For a Boolean algebra B, let $X := \text{uf}(B)$ be the ultrafilters of B. Define $\beta : B \to \wp(X)$ by

$$\beta(a) = \{x \in X \mid a \in x\}$$

Then $\beta : B \to \wp(B)$ is a Boolean embedding.

Moreover, $\{\beta(a) \mid a \in B\}$ is a basis of a Stone topology (compact Hausdorff zero-dimensional topology) on X.

For a Boolean algebra B, let $X := \text{uf}(B)$ be the ultrafilters of B. Define $\beta : B \to \mathcal{P}(X)$ by

$$\beta(a) = \{x \in X \mid a \in x\}$$

Then $\beta : B \to \mathcal{P}(B)$ is a Boolean embedding.

Moreover, $\{\beta(a) \mid a \in B\}$ is a basis of a Stone topology (compact Hausdorff zero-dimensional topology) on X.

Furthermore, B is isomorphic to the Boolean algebra of clopens ($= \text{closed and open sets}$) of this topology.
McKinsey-Tarski topology

McKinsey and Tarski weakened the Stone topology by weakening the basis to
\{β(i)a | a ∈ B\}
We call the weaker topology the McKinsey-Tarski topology.

Key Lemma:
β(i)a = \text{int}\ β(a)
where \text{int} is the interior in the McKinsey-Tarski topology.

McKinsey-Tarski representation: Every closure algebra can be represented as a subalgebra of the closure algebra (℘(X), cl) for some topological space X.
McKinsey and Tarski weakened the Stone topology by weakening the basis to

$$\{ \beta(ia) \mid a \in B \}$$
McKinsey-Tarski topology

McKinsey and Tarski weakened the Stone topology by weakening the basis to

\[\{ \beta(ia) \mid a \in B \} \]

We call the weaker topology the **McKinsey-Tarski topology**.
McKinsey-Tarski topology

McKinsey and Tarski weakened the Stone topology by weakening the basis to

$$\{ \beta(ia) \mid a \in B \}$$

We call the weaker topology the McKinsey-Tarski topology.

Key Lemma: $\beta(ia) = \text{int}\beta(a)$ where int is the interior in the McKinsey-Tarski topology.
McKinsey and Tarski weakened the Stone topology by weakening the basis to

\[\{ \beta(ia) \mid a \in B \} \]

We call the weaker topology the McKinsey-Tarski topology.

Key Lemma: \(\beta(ia) = \text{int}\beta(a) \) where \(\text{int} \) is the interior in the McKinsey-Tarski topology.

McKinsey-Tarski representation: Every closure algebra can be represented as a subalgebra of the closure algebra \((\wp(X), \text{cl})\) for some topological space \(X\).
Stone-Tarski representation for Heyting algebras
Stone-Tarski representation for Heyting algebras

For a Heyting algebra H, let $X := \text{pf}(H)$ be the prime filters of H. Define $\gamma : H \to \Omega(X)$ by

$$\gamma(a) = \{ x \in X \mid a \in x \}$$
For a Heyting algebra H, let $X := \text{pf}(H)$ be the prime filters of H. Define $\gamma : H \rightarrow \Omega(X)$ by

$$\gamma(a) = \{x \in X \mid a \in x\}$$

Then γ is a Heyting embedding.
For a Heyting algebra H, let $X := \text{pf}(H)$ be the prime filters of H. Define $\gamma : H \to \Omega(X)$ by

$$\gamma(a) = \{x \in X \mid a \in x\}$$

Then γ is a Heyting embedding.

Moreover, $\{\gamma(a) \mid a \in H\}$ is a basis of a spectral topology (compact sober coherent topology) on X.

Stone-Tarski representation for Heyting algebras
Stone-Tarski representation for Heyting algebras

For a Heyting algebra H, let $X := \text{pf}(H)$ be the prime filters of H. Define $\gamma : H \rightarrow \Omega(X)$ by

$$\gamma(a) = \{x \in X \mid a \in x\}$$

Then γ is a Heyting embedding.

Moreover, $\{\gamma(a) \mid a \in H\}$ is a basis of a spectral topology (compact sober coherent topology) on X.

Furthermore, H is isomorphic to the Heyting algebra of compact opens of this topology.
For a Heyting algebra H, let $X := \text{pf}(H)$ be the prime filters of H. Define $\gamma : H \to \Omega(X)$ by

$$\gamma(a) = \{x \in X \mid a \in x\}$$

Then γ is a Heyting embedding.

Moreover, $\{\gamma(a) \mid a \in H\}$ is a basis of a spectral topology (compact sober coherent topology) on X.

Furthermore, H is isomorphic to the Heyting algebra of compact opens of this topology.

Consequently, every Heyting algebra can be represented as a subalgebra of the Heyting algebra of opens of some topological space.
From Heyting algebras to closure algebras

We can now see that each Heyting algebra can be realized as the opens of a closure algebra.

Construction:
Let H be a Heyting algebra.
By the Stone-Tarski theorem, represent H as a subalgebra of the opens $\Omega(X)$ of a topological space X.
Then $\Omega(X)$ is the open elements of the closure algebra $(\mathcal{P}(X), cl)$.
Let (B, c) be the subalgebra of $(\mathcal{P}(X), cl)$ generated by H.
Then H is precisely the opens of (B, c).
We can now see that each Heyting algebra can be realized as the opens of a closure algebra.
From Heyting algebras to closure algebras

We can now see that each Heyting algebra can be realized as the opens of a closure algebra.

Construction:
From Heyting algebras to closure algebras

We can now see that each Heyting algebra can be realized as the opens of a closure algebra.

Construction: Let H be a Heyting algebra.
From Heyting algebras to closure algebras

We can now see that each Heyting algebra can be realized as the opens of a closure algebra.

Construction: Let H be a Heyting algebra. By the Stone-Tarski theorem, represent H as a subalgebra of the opens $\Omega(X)$ of a topological space X.
From Heyting algebras to closure algebras

We can now see that each Heyting algebra can be realized as the opens of a closure algebra.

Construction: Let H be a Heyting algebra. By the Stone-Tarski theorem, represent H as a subalgebra of the opens $\Omega(X)$ of a topological space X. Then $\Omega(X)$ is the open elements of the closure algebra $(\varnothing(X), \text{cl})$.
From Heyting algebras to closure algebras

We can now see that each Heyting algebra can be realized as the opens of a closure algebra.

Construction: Let H be a Heyting algebra. By the Stone-Tarski theorem, represent H as a subalgebra of the opens $\Omega(X)$ of a topological space X. Then $\Omega(X)$ is the open elements of the closure algebra $(\wp(X), \text{cl})$. Let (B, c) be the subalgebra of $(\wp(X), \text{cl})$ generated by H.
We can now see that each Heyting algebra can be realized as the opens of a closure algebra.

Construction: Let H be a Heyting algebra. By the Stone-Tarski theorem, represent H as a subalgebra of the opens $\Omega(X)$ of a topological space X. Then $\Omega(X)$ is the open elements of the closure algebra $(\wp(X), \text{cl})$. Let (B, c) be the subalgebra of $(\wp(X), \text{cl})$ generated by H. Then H is precisely the opens of (B, c).
Gödel's translation of the intuitionistic language IL into the modal language ML associates with each formula ϕ of IL the formula ϕ^t of ML obtained by prefixing $□$ to each subformula of ϕ.

Intuition: Think of ϕ as an element of the Lindenbaum algebra \mathcal{H} of intuitionistic logic. Since \mathcal{H} is a Heyting algebra, each element of \mathcal{H} can be thought of as an open element of an appropriate closure algebra (\mathcal{B}, c). Thus, ϕ gets interpreted in (\mathcal{B}, c) as ϕ^t.

Gödel-McKinsey-Tarski Theorem: $\text{IPC} \vdash \phi$ iff $\text{S4} \vdash \phi^t$.
Gödel translation

Gödel’s translation of the intuitionistic language \mathcal{IL} into the modal language \mathcal{ML} associates with each formula φ of \mathcal{IL} the formula φ^t of \mathcal{ML} obtained by prefixing \Box to each subformula of φ.

Intuition:
Think of φ as an element of the Lindenbaum algebra H of intuitionistic logic. Since H is a Heyting algebra, each element of H can be thought of as an open element of an appropriate closure algebra (B, c). Thus, φ gets interpreted in (B, c) as φ^t.

Gödel-McKinsey-Tarski Theorem:
$IPC \vdash \varphi$ iff $S4 \vdash \varphi^t$.

Gödel translation

Gödel’s translation of the intuitionistic language \mathcal{IL} into the modal language \mathcal{ML} associates with each formula φ of \mathcal{IL} the formula φ^t of \mathcal{ML} obtained by prefixing \Box to each subformula of φ.

Intuition:

Think of φ as an element of the Lindenbaum algebra H of intuitionistic logic. Since H is a Heyting algebra, each element of H can be thought of as an open element of an appropriate closure algebra (B, c). Thus, φ gets interpreted in (B, c) as φ^t.

Gödel-McKinsey-Tarski Theorem:

$\text{IPC} \vdash \varphi$ iff $\text{S4} \vdash \varphi^t$.

Gödel translation

Gödel’s translation of the intuitionistic language \mathcal{IL} into the modal language \mathcal{ML} associates with each formula φ of \mathcal{IL} the formula φ^t of \mathcal{ML} obtained by prefixing \Box to each subformula of φ.

Intuition: Think of φ as an element of the Lindenbaum algebra \mathcal{H} of intuitionistic logic.
Gödel translation

Gödel’s translation of the intuitionistic language \mathcal{IL} into the modal language \mathcal{ML} associates with each formula φ of \mathcal{IL} the formula φ^t of \mathcal{ML} obtained by prefixing \square to each subformula of φ.

Intuition: Think of φ as an element of the Lindenbaum algebra \mathcal{H} of intuitionistic logic. Since \mathcal{H} is a Heyting algebra, each element of \mathcal{H} can be thought of as an open element of an appropriate closure algebra (B, c).

Gödel-McKinsey-Tarski Theorem: $\text{IPC} \vdash \varphi$ iff $\text{S4} \vdash \varphi^t$.

Gödel’s translation of the intuitionistic language \mathcal{IL} into the modal language \mathcal{ML} associates with each formula φ of \mathcal{IL} the formula φ^t of \mathcal{ML} obtained by prefixing \Box to each subformula of φ.

Intuition: Think of φ as an element of the Lindenbaum algebra \mathcal{H} of intuitionistic logic. Since \mathcal{H} is a Heyting algebra, each element of \mathcal{H} can be thought of as an open element of an appropriate closure algebra (B, c). Thus, φ gets interpreted in (B, c) as φ^t.

Gödel-McKinsey-Tarski Theorem: $\text{IPC} \vdash \varphi$ iff $\text{S4} \vdash \varphi^t$.

Gödel translation

Gödel’s translation of the intuitionistic language \mathcal{IL} into the modal language \mathcal{ML} associates with each formula φ of \mathcal{IL} the formula φ^t of \mathcal{ML} obtained by prefixing \Box to each subformula of φ.

Intuition: Think of φ as an element of the Lindenbaum algebra \mathcal{H} of intuitionistic logic. Since \mathcal{H} is a Heyting algebra, each element of \mathcal{H} can be thought of as an open element of an appropriate closure algebra (B, c). Thus, φ gets interpreted in (B, c) as φ^t.

Gödel-McKinsey-Tarski Theorem: $\text{IPC} \vdash \varphi$ iff $\text{S4} \vdash \varphi^t$.
Every non-theorem of $S4$ can be refuted in the closure algebra of the real line, and every non-theorem of IPC can be refuted in the Heyting algebra of opens of the real line. More generally, the real line can be replaced by an arbitrary crowded separable metric space (for example, an Euclidean space, the rational line, or Cantor's discontinuum). Rasiowa and Sikorski showed that separable can be dropped from the assumptions.
McKinsey-Tarski completeness

Every non-theorem of $\textbf{S4}$ can be refuted in the closure algebra of the real line,
Every non-theorem of S4 can be refuted in the closure algebra of the real line, and every non-theorem of IPC can be refuted in the Heyting algebra of opens of the real line.
Every non-theorem of $S4$ can be refuted in the closure algebra of the real line, and every non-theorem of IPC can be refuted in the Heyting algebra of opens of the real line.

More generally, the real line can be replaced by an arbitrary crowded separable metric space.
Every non-theorem of S4 can be refuted in the closure algebra of the real line, and every non-theorem of IPC can be refuted in the Heyting algebra of opens of the real line.

More generally, the real line can be replaced by an arbitrary crowded separable metric space (for example, an Euclidean space,
McKinsey-Tarski completeness

Every non-theorem of $\textbf{S4}$ can be refuted in the closure algebra of the real line, and every non-theorem of \textbf{IPC} can be refuted in the Heyting algebra of opens of the real line.

More generally, the real line can be replaced by an arbitrary crowded separable metric space (for example, an Euclidean space, the rational line,
McKinsey-Tarski completeness

Every non-theorem of S4 can be refuted in the closure algebra of the real line, and every non-theorem of IPC can be refuted in the Heyting algebra of opens of the real line.

More generally, the real line can be replaced by an arbitrary crowded separable metric space (for example, an Euclidean space, the rational line, or Cantor’s discontinuum).
McKinsey-Tarski completeness

Every non-theorem of S4 can be refuted in the closure algebra of the real line, and every non-theorem of IPC can be refuted in the Heyting algebra of opens of the real line.

More generally, the real line can be replaced by an arbitrary crowded separable metric space (for example, an Euclidean space, the rational line, or Cantor’s discontinuum).

Rasiowa and Sikorski showed that separable can be dropped from the assumptions.
Let \((B, c)\) be a closure algebra, \(H\) be the Heyting algebra of open elements, and \(X\) be the set of ultrafilters of \((B, c)\).

Define a binary relation \(R\) on \(X\) by \(xRy\) iff \(x \cap H \subseteq y\). Then \(R\) is a preorder (reflexive and transitive), and it is a partial order iff \(B\) is generated as a Boolean algebra by \(H\).

Since \(R\) is a preorder, it gives rise to the Alexandroff topology \(\tau_R\) on \(X\), where the closure of \(U \subseteq X\) is given by \(R^{-1}[U] = \{x \in X | \exists u \in U \text{ with } xRu\}\).

Key Lemma: \(\beta(c) = R^{-1}[\beta(a)]\).

Jónsson-Tarski (1951), Kripke (1963): Every closure algebra can be represented as a subalgebra of the closure algebra \((\mathcal{P}(X), R^{-1})\) for some preordered set \((X, R)\).
Jónsson-Tarski-Kripke representation

Let \((B, c)\) be a closure algebra, \(H\) be the Heyting algebra of open elements, and \(X\) be the set of ultrafilters of \((B, c)\).
Jónsson-Tarski-Kripke representation

Let \((B, c)\) be a closure algebra, \(H\) be the Heyting algebra of open elements, and \(X\) be the set of ultrafilters of \((B, c)\). Define a binary relation \(R\) on \(X\) by

\[xRy \text{ iff } x \cap H \subseteq y \]
Jónsson-Tarski-Kripke representation

Let (B, c) be a closure algebra, H be the Heyting algebra of open elements, and X be the set of ultrafilters of (B, c). Define a binary relation R on X by

$$xRy \text{ iff } x \cap H \subseteq y$$

Then R is a preorder (reflexive and transitive),
Jónsson-Tarski-Kripke representation

Let \((B, c)\) be a closure algebra, \(H\) be the Heyting algebra of open elements, and \(X\) be the set of ultrafilters of \((B, c)\). Define a binary relation \(R\) on \(X\) by

\[
x R y \text{ iff } x \cap H \subseteq y
\]

Then \(R\) is a preorder (reflexive and transitive), and it is a partial order iff \(B\) is generated as a Boolean algebra by \(H\).
Jónsson-Tarski-Kripke representation

Let \((B, c)\) be a closure algebra, \(H\) be the Heyting algebra of open elements, and \(X\) be the set of ultrafilters of \((B, c)\). Define a binary relation \(R\) on \(X\) by

\[xRy \text{ iff } x \cap H \subseteq y \]

Then \(R\) is a preorder (reflexive and transitive), and it is a partial order iff \(B\) is generated as a Boolean algebra by \(H\).

Since \(R\) is a preorder, it gives rise to the Alexandroff topology \(\tau_R\) on \(X\), where the closure of \(U \subseteq X\) is given by

\[R^{-1}[U] = \{ x \in X \mid \exists u \in U \text{ with } xRu \} \]
Jónsson-Tarski-Kripke representation

Let \((B, c)\) be a closure algebra, \(H\) be the Heyting algebra of open elements, and \(X\) be the set of ultrafilters of \((B, c)\). Define a binary relation \(R\) on \(X\) by

\[xRy \text{ iff } x \cap H \subseteq y \]

Then \(R\) is a preorder (reflexive and transitive), and it is a partial order iff \(B\) is generated as a Boolean algebra by \(H\).

Since \(R\) is a preorder, it gives rise to the Alexandroff topology \(\tau_R\) on \(X\), where the closure of \(U \subseteq X\) is given by

\[R^{-1}[U] = \{ x \in X \mid \exists u \in U \text{ with } xRu \} \]

Key Lemma: \(\beta(ca) = R^{-1}[\beta(a)]\).
Let \((B, \mathfrak{c})\) be a closure algebra, \(H\) be the Heyting algebra of open elements, and \(X\) be the set of ultrafilters of \((B, \mathfrak{c})\). Define a binary relation \(R\) on \(X\) by

\[xRy \iff x \cap H \subseteq y \]

Then \(R\) is a preorder (reflexive and transitive), and it is a partial order iff \(B\) is generated as a Boolean algebra by \(H\).

Since \(R\) is a preorder, it gives rise to the Alexandroff topology \(\tau_R\) on \(X\), where the closure of \(U \subseteq X\) is given by

\[R^{-1}[U] = \{ x \in X \mid \exists u \in U \text{ with } xRu \} \]

Key Lemma: \(\beta(\mathfrak{c}a) = R^{-1}[\beta(a)]\).

Jónsson-Tarski (1951), Kripke (1963): Every closure algebra can be represented as a subalgebra of the closure algebra \((\wp(X), R^{-1})\) for some preordered set \((X, R)\).
The three topologies

1. The Stone topology τ_S with clopen basis $\{\beta(a) | a \in B\}$.

2. The McKinsey-Tarski topology τ_{MT} with open basis $\{\beta(ia) | a \in B\}$.

3. The Alexandroff topology τ_R of the preorder R.

Theorem:

1. $\tau_{MT} = \tau_S \cap \tau_R$.

2. R is the specialization preorder of τ_{MT} (that is, $x R y$ iff x belongs to the McKinsey-Tarski closure of y).
The three topologies

We have three topologies on the set of ultrafilters X of a closure algebra (B, c):
The three topologies

We have three topologies on the set of ultrafilters X of a closure algebra (B, c):

1. The **Stone topology** τ_S with clopen basis $\{\beta(a) \mid a \in B\}$.

2. The McKinsey-Tarski topology τ_{MT} with open basis $\{\beta(i_a) \mid a \in B\}$.

3. The Alexandroff topology τ_R of the preorder R.

Theorem:

1. $\tau_{MT} = \tau_S \cap \tau_R$.

2. R is the specialization preorder of τ_{MT} (that is, xRy iff x belongs to the McKinsey-Tarski closure of y).
The three topologies

We have three topologies on the set of ultrafilters X of a closure algebra (B, c):

1. The **Stone topology** τ_S with clopen basis $\{\beta(a) \mid a \in B\}$.
2. The **McKinsey-Tarski topology** τ_{MT} with open basis $\{\beta(ia) \mid a \in B\}$.

Theorem:

1. $\tau_{MT} = \tau_S \cap \tau_R$.
2. R is the specialization preorder of τ_{MT} (that is, xRy iff x belongs to the McKinsey-Tarski closure of y).
The three topologies

We have three topologies on the set of ultrafilters X of a closure algebra (B, c):

1. The **Stone topology** τ_S with clopen basis $\{\beta(a) \mid a \in B\}$.
2. The **McKinsey-Tarski topology** τ_{MT} with open basis $\{\beta(ia) \mid a \in B\}$.
3. The **Alexandroff topology** τ_R of the preorder R.
The three topologies

We have three topologies on the set of ultrafilters X of a closure algebra (B, c):

1. The **Stone topology** τ_S with clopen basis $\{\beta(a) \mid a \in B\}$.
2. The **McKinsey-Tarski topology** τ_{MT} with open basis $\{\beta(ia) \mid a \in B\}$.
3. The **Alexandroff topology** τ_R of the preorder R.

Theorem:
The three topologies

We have three topologies on the set of ultrafilters X of a closure algebra (B, c):

1. The **Stone topology** τ_S with clopen basis $\{\beta(a) \mid a \in B\}$.
2. The **McKinsey-Tarski topology** τ_{MT} with open basis $\{\beta(ia) \mid a \in B\}$.
3. The **Alexandroff topology** τ_R of the preorder R.

Theorem:

1. $\tau_{MT} = \tau_S \cap \tau_R$.
The three topologies

We have three topologies on the set of ultrafilters X of a closure algebra (B, \mathfrak{c}):

1. The **Stone topology** τ_S with clopen basis $\{\beta(a) \mid a \in B\}$.
2. The **McKinsey-Tarski topology** τ_{MT} with open basis $\{\beta(ia) \mid a \in B\}$.
3. The **Alexandroff topology** τ_R of the preorder R.

Theorem:

1. $\tau_{MT} = \tau_S \cap \tau_R$.
2. R is the specialization preorder of τ_{MT}.
The three topologies

We have three topologies on the set of ultrafilters X of a closure algebra (B, c):

1. The **Stone topology** τ_S with clopen basis $\{\beta(a) \mid a \in B\}$.
2. The **McKinsey-Tarski topology** τ_{MT} with open basis $\{\beta(ia) \mid a \in B\}$.
3. The **Alexandroff topology** τ_R of the preorder R.

Theorem:

1. $\tau_{MT} = \tau_S \cap \tau_R$.
2. R is the **specialization preorder** of τ_{MT} (that is, xRy iff x belongs to the McKinsey-Tarski closure of y).
Next phase of the program

Dummett-Lemmon (1959): The correspondence $\text{IPC} \rightarrow \text{S4}$ can be extended to extensions of IPC and S4. For an extension L of IPC, let $M = \text{S4} + \{ \varphi | L \vdash \varphi \}$. Then $L \vdash \psi$ iff $M \vdash \psi$. The logic M is referred to as a modal companion of L.

For an extension M of S4, let $L = \text{IPC} + \{ \varphi | M \vdash \varphi \}$. Then $L \vdash \psi$ iff $M \vdash \psi$. The logic L is referred to as the intuitionistic fragment of M.

Extensions of S4 have unique intuitionistic fragments, but extensions of IPC have many modal companions.
Dummett-Lemmon (1959): The correspondence \(\text{IPC} \rightarrow \text{S4} \) can be extended to extensions of \(\text{IPC} \) and \(\text{S4} \).
Dummett-Lemmon (1959): The correspondence $\text{IPC} \rightarrow \text{S4}$ can be extended to extensions of IPC and S4.

For an extension L of IPC, let $M = \text{S4} + \{ \varphi^t \mid L \vdash \varphi \}$.

Then $L \vdash \psi$ iff $M \vdash \psi$.

The logic M is referred to as a modal companion of L. For an extension M of S4, let $L = \text{IPC} + \{ \varphi \mid M \vdash \varphi \}$. Then $L \vdash \psi$ iff $M \vdash \psi$.

The logic L is referred to as the intuitionistic fragment of M. Extensions of S4 have unique intuitionistic fragments, but extensions of IPC have many modal companions.
Dummett-Lemmon (1959): The correspondence $\text{IPC} \rightarrow S4$ can be extended to extensions of IPC and $S4$.

For an extension L of IPC, let $M = S4 + \{\varphi^t \mid L \vdash \varphi\}$. Then

$$L \vdash \psi \text{ iff } M \vdash \psi^t$$
Next phase of the program

Dummett-Lemmon (1959): The correspondence $\text{IPC} \rightarrow \text{S4}$ can be extended to extensions of IPC and S4.

For an extension L of IPC, let $M = \text{S4} + \{\varphi^t \mid L \vdash \varphi\}$. Then

$$L \vdash \psi \iff M \vdash \psi^t$$

The logic M is referred to as a **modal companion** of L.
Next phase of the program

Dummett-Lemmon (1959): The correspondence $\text{IPC} \rightarrow \text{S4}$ can be extended to extensions of IPC and S4.

For an extension L of IPC, let $M = \text{S4} + \{\varphi^t \mid L \vdash \varphi\}$. Then

$$L \vdash \psi \text{ iff } M \vdash \psi^t$$

The logic M is referred to as a modal companion of L.

For an extension M of S4, let $L = \text{IPC} + \{\varphi \mid M \vdash \varphi^t\}$.
Dummett-Lemmon (1959): The correspondence $\text{IPC} \rightarrow \text{S4}$ can be extended to extensions of IPC and S4.

For an extension L of IPC, let $M = \text{S4} + \{\varphi^t \mid L \vdash \varphi\}$. Then

$$L \vdash \psi \text{ iff } M \vdash \psi^t$$

The logic M is referred to as a modal companion of L.

For an extension M of S4, let $L = \text{IPC} + \{\varphi \mid M \vdash \varphi^t\}$. Then

$$L \vdash \psi \text{ iff } M \vdash \psi^t$$
Next phase of the program

Dummett-Lemmon (1959): The correspondence $\text{IPC} \rightarrow \text{S4}$ can be extended to extensions of IPC and S4.

For an extension L of IPC, let $M = \text{S4} + \{ \varphi^t \mid L \vdash \varphi \}$. Then

$$L \vdash \psi \iff M \vdash \psi^t$$

The logic M is referred to as a **modal companion** of L.

For an extension M of S4, let $L = \text{IPC} + \{ \varphi \mid M \vdash \varphi^t \}$. Then

$$L \vdash \psi \iff M \vdash \psi^t$$

The logic L is referred to as the **intuitionistic fragment** of M.

Dummett-Lemmon (1959): The correspondence $\text{IPC} \rightarrow S4$ can be extended to extensions of IPC and $S4$.

For an extension L of IPC, let $M = S4 + \{\varphi^t \mid L \vdash \varphi\}$. Then

$$L \vdash \psi \text{ iff } M \vdash \psi^t$$

The logic M is referred to as a modal companion of L.

For an extension M of $S4$, let $L = \text{IPC} + \{\varphi \mid M \vdash \varphi^t\}$. Then

$$L \vdash \psi \text{ iff } M \vdash \psi^t$$

The logic L is referred to as the intuitionistic fragment of M.

Extensions of $S4$ have unique intuitionistic fragments,
Dummett-Lemmon (1959): The correspondence $\text{IPC} \rightarrow \text{S4}$ can be extended to extensions of IPC and S4.

For an extension L of IPC, let $M = \text{S4} + \{ \varphi^t \mid L \vdash \varphi \}$. Then

$$L \vdash \psi \text{ iff } M \vdash \psi^t$$

The logic M is referred to as a modal companion of L.

For an extension M of S4, let $L = \text{IPC} + \{ \varphi \mid M \vdash \varphi^t \}$. Then

$$L \vdash \psi \text{ iff } M \vdash \psi^t$$

The logic L is referred to as the intuitionistic fragment of M.

Extensions of S4 have unique intuitionistic fragments, but extensions of IPC have many modal companions.
Grzegorczyk logic

In 1968 Grzegorczyk introduced a new modal companion of IPC, which turned out to be of fundamental importance. S4 is the logic of all closure algebras. The Grzegorczyk logic \(\text{Grz} \) is the logic of those closure algebras \((B, c)\) in which \(B\) is generated as a Boolean algebra by the Heyting algebra \(H\) of open elements of \((B, c)\).

Esakia (1976): \(\text{Grz} \) is the largest modal companion of IPC.

Therefore, an extension \(M\) of S4 is a modal companion of IPC iff \(S4 \subseteq M \subseteq \text{Grz} \).

The Blok-Esakia theorem (1976): The lattice of extensions of IPC is isomorphic to the lattice of extensions of \(\text{Grz} \).
In 1968 Grzegorczyk introduced a new modal companion of IPC, which turned out to be of fundamental importance.
Grzegorczyk logic

In 1968 Grzegorczyk introduced a new modal companion of IPC, which turned out to be of fundamental importance.

- **S4** is the logic of all closure algebras.
Grzegorczyk logic

In 1968 Grzegorczyk introduced a new modal companion of **IPC**, which turned out to be of fundamental importance.

- **S4** is the logic of all closure algebras.
- The Grzegorczyk logic **Grz** is the logic of those closure algebras \((B, c)\) in which \(B\) is generated as a Boolean algebra by the Heyting algebra \(H\) of open elements of \((B, c)\).
In 1968 Grzegorczyk introduced a new modal companion of IPC, which turned out to be of fundamental importance.

- S4 is the logic of all closure algebras.
- The Grzegorczyk logic Grz is the logic of those closure algebras (B, c) in which B is generated as a Boolean algebra by the Heyting algebra H of open elements of (B, c).

Esakia (1976): Grz is the largest modal companion of IPC.
Grzegorczyk logic

In 1968 Grzegorczyk introduced a new modal companion of IPC, which turned out to be of fundamental importance.

- **S4** is the logic of all closure algebras.
- The Grzegorczyk logic **Grz** is the logic of those closure algebras \((B, c)\) in which \(B\) is generated as a Boolean algebra by the Heyting algebra \(H\) of open elements of \((B, c)\).

Esakia (1976): **Grz** is the largest modal companion of **IPC**. Therefore, an extension \(M\) of **S4** is a modal companion of **IPC** iff **S4 ⊆ M ⊆ Grz**.
Grzegorczyk logic

In 1968 Grzegorczyk introduced a new modal companion of IPC, which turned out to be of fundamental importance.

- S4 is the logic of all closure algebras.
- The Grzegorczyk logic Grz is the logic of those closure algebras (B, c) in which B is generated as a Boolean algebra by the Heyting algebra H of open elements of (B, c).

Esakia (1976): Grz is the largest modal companion of IPC. Therefore, an extension M of S4 is a modal companion of IPC iff $\text{S4} \subseteq M \subseteq \text{Grz}$.

The Blok-Esakia theorem (1976): The lattice of extensions of IPC is isomorphic to the lattice of extensions of Grz.
Further directions

One of the consequences of the McKinsey-Tarski completeness theorem is that many important properties of topological spaces are not expressible in the language of closure algebras. For example, we cannot tell apart the real line from Cantor's discontinuum or Euclidean spaces of dimension greater than 1.

One option to increase expressivity is to work with derivative instead of closure.

\[x \in \text{cl}(A) \iff U_x \cap A \neq \emptyset \text{ for every open neighborhood } U_x \text{ of } x. \]

\[x \in \text{d}(A) \iff (U_x \setminus \{x\}) \cap A \neq \emptyset \text{ for every open neighborhood } U_x \text{ of } x. \]

\[\text{cl}(A) = A \cup \text{d}(A) \]
Further directions

One of the consequences of the McKinsey-Tarski completeness theorem is that many important properties of topological spaces are not expressible in the language of closure algebras.
Further directions

One of the consequences of the McKinsey-Tarski completeness theorem is that many important properties of topological spaces are not expressible in the language of closure algebras.

For example, we cannot tell apart the real line from Cantor’s discontinuum or Euclidean spaces of dimension > 1.
Further directions

One of the consequences of the McKinsey-Tarski completeness theorem is that many important properties of topological spaces are not expressible in the language of closure algebras.

For example, we cannot tell apart the real line from Cantor’s discontinuum or Euclidean spaces of dimension >1.

One option to increase expressivity is to work with derivative instead of closure.
Further directions

One of the consequences of the McKinsey-Tarski completeness theorem is that many important properties of topological spaces are not expressible in the language of closure algebras.

For example, we cannot tell apart the real line from Cantor’s discontinuum or Euclidean spaces of dimension >1.

One option to increase expressivity is to work with derivative instead of closure.

$x \in \text{cl}(A)$ iff $U_x \cap A \neq \emptyset$ for every open neighborhood U_x of x.
Further directions

One of the consequences of the McKinsey-Tarski completeness theorem is that many important properties of topological spaces are not expressible in the language of closure algebras.

For example, we cannot tell apart the real line from Cantor’s discontinuum or Euclidean spaces of dimension > 1.

One option to increase expressivity is to work with derivative instead of closure.

$x \in \text{cl}(A)$ iff $U_x \cap A \neq \emptyset$ for every open neighborhood U_x of x.

$x \in \text{d}(A)$ iff $(U_x \setminus \{x\}) \cap A \neq \emptyset$ for every open neighborhood U_x.
Further directions

One of the consequences of the McKinsey-Tarski completeness theorem is that many important properties of topological spaces are not expressible in the language of closure algebras.

For example, we cannot tell apart the real line from Cantor’s discontinuum or Euclidean spaces of dimension > 1.

One option to increase expressivity is to work with derivative instead of closure.

$x \in \text{cl}(A) \iff U_x \cap A \neq \emptyset$ for every open neighborhood U_x of x.

$x \in \text{d}(A) \iff (U_x \setminus \{x\}) \cap A \neq \emptyset$ for every open neighborhood U_x.

$$\text{cl}(A) = A \cup \text{d}(A)$$
Derivational logics

Working with derivative yields the concept of a derivative algebra \((B, d)\). The correspondence between Heyting algebras and closure algebras can be extended to include derivative algebras by setting \(c a = a \lor d a\). The logic of derivative algebras is the weak \(K4\). \(wK4\) is the logic of all topological spaces when \(\Box\) is interpreted as derivative. \(K4\) is the logic of all \(Td\)-spaces (the derivative of a set is closed). Derivational logics can express the \(T0\)-separation axiom, but cannot express higher separation axioms.
Derivational logics

Working with derivative yields the concept of a derivative algebra \((B, d)\).
Derivational logics

Working with derivative yields the concept of a derivative algebra \((B, d)\).

The correspondence between Heyting algebras and closure algebras can be extended to include derivative algebras by setting \(ca = a \lor da\).
Derivational logics

Working with derivative yields the concept of a derivative algebra \((B, d)\).

The correspondence between Heyting algebras and closure algebras can be extended to include derivative algebras by setting \(ca = a \lor da\).

- The logic of derivative algebras is the weak K4.
Derivational logics

Working with derivative yields the concept of a **derivative algebra** \((B, d)\).

The correspondence between Heyting algebras and closure algebras can be extended to include derivative algebras by setting \(ca = a \lor da\).

- The logic of derivative algebras is the **weak K4**.
- **wK4** is the logic of all topological spaces when \(\Diamond\) is interpreted as derivative.
Derivational logics

Working with derivative yields the concept of a derivative algebra \((B, d)\).

The correspondence between Heyting algebras and closure algebras can be extended to include derivative algebras by setting \(ca = a \lor da\).

- The logic of derivative algebras is the weak K4.
- \(wK4\) is the logic of all topological spaces when \(\Diamond\) is interpreted as derivative.
- \(K4\) is the logic of all \(Td\)-spaces (the derivative of a set is closed).
Derivational logics

Working with derivative yields the concept of a derivative algebra \((B, d)\).

The correspondence between Heyting algebras and closure algebras can be extended to include derivative algebras by setting \(ca = a \lor da\).

- The logic of derivative algebras is the weak K4.
- \(wK4\) is the logic of all topological spaces when \(\diamond\) is interpreted as derivative.
- K4 is the logic of all \(T_d\)-spaces (the derivative of a set is closed).
- Derivational logics can express the \(T_0\)-separation axiom,
Derivational logics

Working with derivative yields the concept of a derivative algebra \((B, d)\).

The correspondence between Heyting algebras and closure algebras can be extended to include derivative algebras by setting \(ca = a \lor da\).

- The logic of derivative algebras is the weak K4.
- \(wK4\) is the logic of all topological spaces when \(\diamond\) is interpreted as derivative.
- \(K4\) is the logic of all \(Td\)-spaces (the derivative of a set is closed).
- Derivational logics can express the \(T0\)-separation axiom, but cannot express higher separation axioms.
Derivational logics can distinguish between the real line, Cantor’s discontinuum, and Euclidean spaces of dimension > 1. But they cannot distinguish between \mathbb{R}^n and \mathbb{R}^m for $n, m > 1$. Gödel’s celebrated incompleteness theorem is expressible in derivational logic ($\neg \square \bot \rightarrow \neg \square \neg \square \bot$). The Gödel-Löb logic is the logic of scattered spaces. The expressive power can be increased further by adding the universal modality. This, for example, allows to express whether a space is connected. But there are other topological properties (for example, being Hausdorff, that it cannot express). The expressive power can be further extended by introducing nominals. But this may lead to undecidability of our system. One direction of current research is to seek a good balance between expressive power and decidability of a modal system.
Derivational logics

Derivational logics can distinguish between the real line, Cantor’s discontinuum, and Euclidean spaces of dimension > 1.

Gödel’s celebrated incompleteness theorem is expressible in derivational logic ($\neg \Box \bot \rightarrow \neg \Box \neg \Box \bot$). The Gödel-Löb logic is the logic of scattered spaces. The expressive power can be increased further by adding the universal modality. This, for example, allows to express whether a space is connected. But there are other topological properties (for example, being Hausdorff, that it cannot express). The expressive power can be further extended by introducing nominals. But this may lead to undecidability of our system. One direction of current research is to seek a good balance between expressive power and decidability of a modal system.
Derivational logics

Derivational logics can distinguish between the real line, Cantor’s discontinuum, and Euclidean spaces of dimension > 1. But they cannot distinguish between \mathbb{R}^n and \mathbb{R}^m for $n, m > 1$.
Derivational logics

- Derivational logics can distinguish between the real line, Cantor’s discontinuum, and Euclidean spaces of dimension > 1. But they cannot distinguish between \mathbb{R}^n and \mathbb{R}^m for $n, m > 1$.

- Gödel’s celebrated incompleteness theorem is expressible in derivational logic ($\neg \Box \bot \rightarrow \neg \Box \neg \Box \bot$).
Derivational logics

- Derivational logics can distinguish between the real line, Cantor’s discontinuum, and Euclidean spaces of dimension \(> 1 \). But they cannot distinguish between \(\mathbb{R}^n \) and \(\mathbb{R}^m \) for \(n, m > 1 \).
- Gödel’s celebrated **incompleteness theorem** is expressible in derivational logic (\(\neg \Box \bot \rightarrow \neg \Box \neg \Box \bot \)).
- The **Gödel-Löb logic** is the logic of scattered spaces.
Derivational logics

- Derivational logics can distinguish between the real line, Cantor’s discontinuum, and Euclidean spaces of dimension > 1. But they cannot distinguish between \mathbb{R}^n and \mathbb{R}^m for $n, m > 1$.

- Gödel’s celebrated incompleteness theorem is expressible in derivational logic ($\neg \square \bot \rightarrow \neg \square \neg \square \bot$).

- The Gödel-Löb logic is the logic of scattered spaces.

The expressive power can be increased further by adding the universal modality.
Derivational logics

- Derivational logics can distinguish between the real line, Cantor’s discontinuum, and Euclidean spaces of dimension > 1. But they cannot distinguish between \mathbb{R}^n and \mathbb{R}^m for $n, m > 1$.

- Gödel’s celebrated **incompleteness theorem** is expressible in derivational logic ($\neg \Box \bot \rightarrow \neg \Box \neg \Box \bot$).

- The **Gödel-Löb logic** is the logic of scattered spaces.

The expressive power can be increased further by adding the **universal modality**. This, for example, allows to express whether a space is **connected**.
Derivational logics

- Derivational logics can distinguish between the real line, Cantor’s discontinuum, and Euclidean spaces of dimension > 1. But they cannot distinguish between \mathbb{R}^n and \mathbb{R}^m for $n, m > 1$.

- Gödel’s celebrated incompleteness theorem is expressible in derivational logic ($\neg \Box \bot \rightarrow \neg \Box \neg \Box \bot$).

- The Gödel-Löb logic is the logic of scattered spaces.

The expressive power can be increased further by adding the universal modality. This, for example, allows to express whether a space is connected. But there are other topological properties (for example, being Hausdorff, that it cannot express).
Derivational logics

- Derivational logics can distinguish between the real line, Cantor’s discontinuum, and Euclidean spaces of dimension > 1. But they cannot distinguish between \mathbb{R}^n and \mathbb{R}^m for $n, m > 1$.
- Gödel’s celebrated incompleteness theorem is expressible in derivational logic ($\neg \Box \bot \rightarrow \neg \Box \neg \Box \bot$).
- The Gödel-Löb logic is the logic of scattered spaces.

The expressive power can be increased further by adding the universal modality. This, for example, allows to express whether a space is connected. But there are other topological properties (for example, being Hausdorff, that it cannot express).

The expressive power can be further extended by introducing nominals.
Derivational logics

- Derivational logics can distinguish between the real line, Cantor’s discontinuum, and Euclidean spaces of dimension \(> 1 \). But they cannot distinguish between \(\mathbb{R}^n \) and \(\mathbb{R}^m \) for \(n, m > 1 \).

- Gödel’s celebrated incompleteness theorem is expressible in derivational logic (\(\neg \Box \bot \rightarrow \neg \Box \neg \Box \bot \)).

- The Gödel-Löb logic is the logic of scattered spaces.

The expressive power can be increased further by adding the universal modality. This, for example, allows to express whether a space is connected. But there are other topological properties (for example, being Hausdorff, that it cannot express).

The expressive power can be further extended by introducing nominals. But this may lead to undecidability of our system.
Derivational logics

- Derivational logics can distinguish between the real line, Cantor’s discontinuum, and Euclidean spaces of dimension > 1. But they cannot distinguish between \mathbb{R}^n and \mathbb{R}^m for $n, m > 1$.

- Gödel’s celebrated incompleteness theorem is expressible in derivational logic ($\neg \square \bot \rightarrow \neg \square \neg \square \bot$).

- The Gödel-Löb logic is the logic of scattered spaces.

The expressive power can be increased further by adding the universal modality. This, for example, allows to express whether a space is connected. But there are other topological properties (for example, being Hausdorff, that it cannot express).

The expressive power can be further extended by introducing nominals. But this may lead to undecidability of our system. One direction of current research is to seek a good balance between expressive power and decidability of a modal system.
A closer analysis of the McKinsey-Tarski theorem shows that to refute non-theorems of S_4 it is sufficient to work with Borel sets on the real line. Therefore, S_4 is the logic of the closure algebra $(\text{Bor}(\mathbb{R}), \text{cl})$. This yields the following natural question: Which extensions of S_4 can be picked up as logics of subalgebras of the closure algebra $(\text{P}(\mathbb{R}), \text{cl})$? Of course, instead of the real line, we can consider any space for which the McKinsey-Tarski theorem is applicable. Surprisingly, this question has a positive solution. For example, we can pick up every extension of S_4 from subalgebras of the closure algebra of Cantor’s discontinuum! This is no longer so if we work with the real line (connectedness gets in the way). Nevertheless, it is possible to describe the logics that arise as logics of subalgebras of the closure algebra of the real line.
Back to the McKinsey-Tarski completeness

A closer analysis of the McKinsey-Tarski theorem shows that to refute non-theorems of $\textbf{S4}$ it is sufficient to work with Borel sets on the real line.
Back to the McKinsey-Tarski completeness

A closer analysis of the McKinsey-Tarski theorem shows that to refute non-theorems of $\textbf{S4}$ it is sufficient to work with Borel sets on the real line. Therefore, $\textbf{S4}$ is the logic of the closure algebra $(\text{Bor}(\mathbb{R}), \text{cl})$.

Surprisingly, this question has a positive solution. For example, we can pick up every extension of $\textbf{S4}$ from subalgebras of the closure algebra of Cantor's discontinuum! This is no longer so if we work with the real line (connectedness gets in the way). Nevertheless, it is possible to describe the logics that arise as logics of subalgebras of the closure algebra of the real line.
Back to the McKinsey-Tarski completeness

A closer analysis of the McKinsey-Tarski theorem shows that to refute non-theorems of $\mathbf{S}4$ it is sufficient to work with Borel sets on the real line. Therefore, $\mathbf{S}4$ is the logic of the closure algebra $\langle \text{Bor}(\mathbb{R}), \text{cl} \rangle$. This yields the following natural question:
A closer analysis of the McKinsey-Tarski theorem shows that to refute non-theorems of $S4$ it is sufficient to work with Borel sets on the real line. Therefore, $S4$ is the logic of the closure algebra $(\text{Bor}(\mathbb{R}), \text{cl})$. This yields the following natural question:

Which extensions of $S4$ can be picked up as logics of subalgebras of the closure algebra $(\wp(\mathbb{R}), \text{cl})$?
Back to the McKinsey-Tarski completeness

A closer analysis of the McKinsey-Tarski theorem shows that to refute non-theorems of $\mathbf{S4}$ it is sufficient to work with Borel sets on the real line. Therefore, $\mathbf{S4}$ is the logic of the closure algebra $(\text{Bor}(\mathbb{R}), \text{cl})$. This yields the following natural question:

Which extensions of $\mathbf{S4}$ can be picked up as logics of subalgebras of the closure algebra $(\mathcal{P}(\mathbb{R}), \text{cl})$? Of course, instead of the real line, we can consider any space for which the McKinsey-Tarski theorem is applicable.
A closer analysis of the McKinsey-Tarski theorem shows that to refute non-theorems of $\mathbf{S4}$ it is sufficient to work with Borel sets on the real line. Therefore, $\mathbf{S4}$ is the logic of the closure algebra $(\text{Bor}(\mathbb{R}), \text{cl})$. This yields the following natural question:

Which extensions of $\mathbf{S4}$ can be picked up as logics of subalgebras of the closure algebra $(\mathcal{P}(\mathbb{R}), \text{cl})$? Of course, instead of the real line, we can consider any space for which the McKinsey-Tarski theorem is applicable.

Surprisingly, this question has a positive solution.
A closer analysis of the McKinsey-Tarski theorem shows that to refute non-theorems of $S4$ it is sufficient to work with Borel sets on the real line. Therefore, $S4$ is the logic of the closure algebra $(\text{Bor}(\mathbb{R}), \text{cl})$. This yields the following natural question:

Which extensions of $S4$ can be picked up as logics of subalgebras of the closure algebra $(\mathcal{P}(\mathbb{R}), \text{cl})$? Of course, instead of the real line, we can consider any space for which the McKinsey-Tarski theorem is applicable.

Surprisingly, this question has a positive solution. For example, we can pick up every extension of $S4$ from subalgebras of the closure algebra of Cantor’s discontinuum!
A closer analysis of the McKinsey-Tarski theorem shows that to refute non-theorems of $\mathbf{S4}$ it is sufficient to work with Borel sets on the real line. Therefore, $\mathbf{S4}$ is the logic of the closure algebra $(\text{Bor}(\mathbb{R}), \text{cl})$. This yields the following natural question:

Which extensions of $\mathbf{S4}$ can be picked up as logics of subalgebras of the closure algebra $(\wp(\mathbb{R}), \text{cl})$? Of course, instead of the real line, we can consider any space for which the McKinsey-Tarski theorem is applicable.

Surprisingly, this question has a positive solution. For example, we can pick up every extension of $\mathbf{S4}$ from subalgebras of the closure algebra of Cantor's discontinuum! This is no longer so if we work with the real line (connectedness gets in the way).
A closer analysis of the McKinsey-Tarski theorem shows that to refute non-theorems of S4 it is sufficient to work with Borel sets on the real line. Therefore, S4 is the logic of the closure algebra $(\text{Bor}(\mathbb{R}), \text{cl})$. This yields the following natural question:

Which extensions of S4 can be picked up as logics of subalgebras of the closure algebra $(\wp(\mathbb{R}), \text{cl})$? Of course, instead of the real line, we can consider any space for which the McKinsey-Tarski theorem is applicable.

Surprisingly, this question has a positive solution. For example, we can pick up every extension of S4 from subalgebras of the closure algebra of Cantor’s discontinuum! This is no longer so if we work with the real line (connectedness gets in the way). Nevertheless, it is possible to describe the logics that arise as logics of subalgebras of the closure algebra of the real line.
Measure-theoretic interpretation

The Lebesgue measure algebra \mathcal{M} is obtained from $\mathcal{B}(\mathbb{R})$ by modding out Borel sets of measure zero.

Lando-Scott (2010): There is a closure operator c on \mathcal{M} such that (\mathcal{M}, c) is a closure algebra and S_4 is the logic of (\mathcal{M}, c).

New results in measure-theoretic interpretation of modal logic are being proved as we speak!
Measure-theoretic interpretation

The Lebesgue measure algebra \mathcal{M} is obtained from $\text{Bor}(\mathbb{R})$ by modding out Borel sets of measure zero.
Measure-theoretic interpretation

The Lebesgue measure algebra \mathcal{M} is obtained from $\text{Bor}(\mathbb{R})$ by modding out Borel sets of measure zero.

Lando-Scott (2010): There is a closure operator c on \mathcal{M} such that (\mathcal{M}, c) is a closure algebra and $S4$ is the logic of (\mathcal{M}, c).
Measure-theoretic interpretation

The Lebesgue measure algebra \mathcal{M} is obtained from $\text{Bor}(\mathbb{R})$ by modding out Borel sets of measure zero.

Lando-Scott (2010): There is a closure operator \mathfrak{c} on \mathcal{M} such that $(\mathcal{M}, \mathfrak{c})$ is a closure algebra and S4 is the logic of $(\mathcal{M}, \mathfrak{c})$.

New results in measure-theoretic interpretation of modal logic are being proved as we speak!
First-order logics

The Gödel translation of IPC into S4 extends to the predicate case. However, it remains an open problem whether there is a predicate analogue of the Blok-Esakia theorem. One of the difficulties is the lack of adequate semantics in the predicate case. While both first-order intuitionistic logic and first-order S4 are complete (algebraically, topologically, or relationally), this is no longer true for many extensions of these logics. Thus, it is desirable to obtain a workable adequate semantics of these systems. Some attempts in this direction include sheaf semantics, and more generally, bundle semantics. We do have an adequate semantics for one-variable fragments of these systems by means of monadic Heyting algebras and monadic modal algebras. But in its general form, the Blok-Esakia theorem remains unsolved even for these weaker systems (some partial results in this direction are available).
First-order logics

The Gödel translation of IPC into S4 extends to the predicate case.
First-order logics

The Gödel translation of IPC into $\textbf{S4}$ extends to the predicate case. However, it remains an open problem whether there is a predicate analogue of the Blok-Esakia theorem.
First-order logics

The Gödel translation of \textbf{IPC} into \textbf{S4} extends to the predicate case. However, it remains an open problem whether there is a predicate analogue of the Blok-Esakia theorem.

One of the difficulties is the lack of adequate semantics in the predicate case.
First-order logics

The Gödel translation of \textbf{IPC} into \textbf{S4} extends to the predicate case. However, it remains an open problem whether there is a predicate analogue of the Blok-Esakia theorem.

One of the difficulties is the lack of adequate semantics in the predicate case. While both first-order intuitionistic logic and first-order \textbf{S4} are complete (algebraically, topologically, or relationally), this is no longer true for many extensions of these logics.
First-order logics

The Gödel translation of IPC into S4 extends to the predicate case. However, it remains an open problem whether there is a predicate analogue of the Blok-Esakia theorem.

One of the difficulties is the lack of adequate semantics in the predicate case. While both first-order intuitionistic logic and first-order S4 are complete (algebraically, topologically, or relationally), this is no longer true for many extensions of these logics. Thus, it is desirable to obtain a workable adequate semantics of these systems.
First-order logics

The Gödel translation of \textbf{IPC} into \textbf{S4} extends to the predicate case. However, it remains an open problem whether there is a predicate analogue of the Blok-Esakia theorem.

One of the difficulties is the lack of adequate semantics in the predicate case. While both first-order intuitionistic logic and first-order \textbf{S4} are complete (algebraically, topologically, or relationally), this is no longer true for many extensions of these logics. Thus, it is desirable to obtain a workable adequate semantics of these systems. Some attempts in this direction include \textbf{sheaf semantics}, and more generally, \textbf{bundle semantics}.
First-order logics

The Gödel translation of **IPC** into **S4** extends to the predicate case. However, it remains an open problem whether there is a predicate analogue of the Blok-Esakia theorem.

One of the difficulties is the lack of adequate semantics in the predicate case. While both first-order intuitionistic logic and first-order **S4** are complete (algebraically, topologically, or relationally), this is no longer true for many extensions of these logics. Thus, it is desirable to obtain a workable adequate semantics of these systems. Some attempts in this direction include **sheaf semantics**, and more generally, **bundle semantics**.

We do have an adequate semantics for one-variable fragments of these systems by means of **monadic Heyting algebras** and **monadic modal algebras**.
First-order logics

The Gödel translation of IPC into S4 extends to the predicate case. However, it remains an open problem whether there is a predicate analogue of the Blok-Esakia theorem.

One of the difficulties is the lack of adequate semantics in the predicate case. While both first-order intuitionistic logic and first-order S4 are complete (algebraically, topologically, or relationally), this is no longer true for many extensions of these logics. Thus, it is desirable to obtain a workable adequate semantics of these systems. Some attempts in this direction include sheaf semantics, and more generally, bundle semantics.

We do have an adequate semantics for one-variable fragments of these systems by means of monadic Heyting algebras and monadic modal algebras. But in its general form, the Blok-Esakia theorem remains unsolved even for these weaker systems.
First-order logics

The Gödel translation of IPC into S4 extends to the predicate case. However, it remains an open problem whether there is a predicate analogue of the Blok-Esakia theorem.

One of the difficulties is the lack of adequate semantics in the predicate case. While both first-order intuitionistic logic and first-order S4 are complete (algebraically, topologically, or relationally), this is no longer true for many extensions of these logics. Thus, it is desirable to obtain a workable adequate semantics of these systems. Some attempts in this direction include sheaf semantics, and more generally, bundle semantics.

We do have an adequate semantics for one-variable fragments of these systems by means of monadic Heyting algebras and monadic modal algebras. But in its general form, the Blok-Esakia theorem remains unsolved even for these weaker systems (some partial results in this direction are available).
Conclusion

Tarski's program remains an active field of research. Some of the old problems are being resolved, and some new and challenging problems are being proposed. I am excited to see how it will continue to develop in the future.

Thank you!
Tarski’s program remains an active field of research.
Tarski’s program remains an active field of research. Some of the old problems are being resolved,
Conclusion

Tarski’s program remains an active field of research. Some of the old problems are being resolved, and some new and challenging problems are being proposed.
Conclusion

Tarski’s program remains an active field of research. Some of the old problems are being resolved, and some new and challenging problems are being proposed.

I am excited to see how it will continue to develop in the future.
Tarski’s program remains an active field of research. Some of the old problems are being resolved, and some new and challenging problems are being proposed.

I am excited to see how it will continue to develop in the future.

Thank you!