Metric Properties of Sets Definable in $(\mathfrak{R}, \alpha^{-\mathbb{N}})$

Michael Tychonievich

Department of Mathematics

The Ohio State University

Preliminary report

ASL North American Annual Meeting 2011

 \mathfrak{R} an o-minimal expansion of $(\mathbb{R},<,+,\cdot)$

o-minimal: definable unary sets are finite unions of

intervals

 $\operatorname{fr} X = \operatorname{cl} X \setminus X$

 $\operatorname{Vol}_d(X) = d$ -dimensional volume of X

Fact. Let X be bounded and definable in \Re such that dim X =

d. Then $\operatorname{Vol}_d(X) < \infty$ and $\dim \operatorname{fr} X < d$.

There are embedded submanifolds of \mathbb{R}^n for which this fails:

(1) $y = \sin(1/x)$ fr has dim = 1, curve has infinite length

(2) $y = x \sin(1/x)$ fr has dim = 0, curve has infinite length

(3) $y = x^2 \sin(1/x)$ fr has dim = 0, curve has finite length

For fixed $\alpha > 1$, consider expansion of \Re by

$$\alpha^{-\mathbb{N}} := \{\alpha^{-n} : n \in \mathbb{N}\}$$

1. Theorem. Suppose \Re defines no irrational power functions on $\mathbb{R}^{>0}$. Let *X* be bounded and definable in $(\Re, \alpha^{-\mathbb{N}})$ such that dim *X* = *d*. Then

 $\operatorname{Vol}_d X < \infty$ *iff* dim fr reg X < d

In particular, if X is an embedded submanifold of some \mathbb{R}^n ,

then

$$\operatorname{Vol}_d X < \infty$$
 iff dim fr $X < d$

Thus definable sets in $(\mathfrak{R}, \alpha^{-\mathbb{N}})$ cannot behave as curve (2). Theorem 1 is optimal in two senses:

- Behavior as in (1) is unavoidable: polygonal path connecting points $(x^2, 1)$ to points $(\alpha x^2, -1)$ and $(\alpha^{-1}x^2, -1)$ for $x \in \alpha^{-\mathbb{N}}$ ($\alpha^{-\mathbb{N}}$ itself is a dim = 0 example)
- If \mathfrak{R} defines an irrational power function on $\mathbb{R}^{>0}$, then a result of Hieronymi shows that $(\mathfrak{R}, \alpha^{-\mathbb{N}})$ defines \mathbb{Z} , so this requirement for Theorem 1 cannot be avoided.

Outline of proof of Theorem 1. For $x \in \mathbb{R}$, let

$$\lambda(x) = \begin{cases} 0 & : x \le 0\\ \alpha^n : n \in \mathbb{Z} \text{ and } \alpha^n \le x < \alpha^{n+1} \end{cases}$$

Then $(\mathfrak{R}, \alpha^{-\mathbb{N}})$ is interdefinable with (\mathfrak{R}, λ) and

2. Theorem (Miller). The theory of (\mathfrak{R}, λ) admits QE and is

 \forall -axiomatizable relative to the theory of \mathfrak{R} .

Apply o-minimal trivialization and definable choice in $(\mathfrak{R}, \alpha^{-\mathbb{N}})$:

3. Lemma. Let $X \subseteq \mathbb{R}^n$ be definable in $(\mathfrak{R}, \alpha^{-\mathbb{N}})$. Then Xis a finite union of images $F((\alpha^{-\mathbb{N}})^m \times [0, 1]^d)$, where F is definable in \mathfrak{R} and injective on its support intersected with $(\alpha^{-\mathbb{N}})^m \times [0, 1]^d$. Combine Lemma with Cluckers' decomposition theorem for

definable sets in Presburger arithmetic and the polynomially-

bounded preparation theorem of van den Dries and Speissegger for induced structure:

4. Theorem. Let $Z \subseteq (\alpha^{-\mathbb{N}})^m$ be definable in $(\mathfrak{R}, \alpha^{-\mathbb{N}})$. Then

Z is definable in $(\mathbb{R}, \cdot, <)$.

Volume estimates: Using Pawłucki's Lipschitz cell decomposition theorem and induced structure, reduce to the case that the derivative of *F* over the last *d* coordinates $D_xF(h, x)$ is triangular and the volume element $|\det D_xF(h, x)|$ is uniformly Lipschitz. Put

$$A(h) := \operatorname{vol}_d(F(\{h\} \times [0, 1]^d))$$
$$= \int |\det D_x F(h, x)| dx$$

 \boldsymbol{A} is uniformly Lipschitz, and so has continuous extension to

the boundary of its support

Estimate the integral definably to get dfbl (in \Re) functions

 $V, U : \mathbb{R}^m \to \mathbb{R}$ such that U(h) < A(h) < V(h) and

0 < U(h) if 0 < A(h)

$$\lim_{h \to z} V(h) = 0 \text{ if } \lim_{h \to z} A(h) = 0$$

To determine when the volume of $F((\alpha^{-\mathbb{N}})^m \times [0,1]^d)$ is finite, we sum the values of these functions over $(\alpha^{-\mathbb{N}})^m$ to approximate.

5. Lemma. Let $V : \mathbb{R}^m \to \mathbb{R}^{\geq 0}$ be definable in \mathfrak{R} such that $\lim_{h \to z, h \in (\alpha^{-\mathbb{N}})^m} V(h) = 0$ for each $z \in \operatorname{fr}(\alpha^{-\mathbb{N}})^m$. Then $\sum_{h \in (\alpha^{-\mathbb{N}})^m} V(h) < \infty$.

The proof is based on asymptotics provided by [DS]-preparation

and the induced structure result above.

Final steps in the argument show that A(h) goes to 0 on

 $(\alpha^{-\mathbb{N}})^m$ iff the dimension of frontier of the set

 $X = F((\alpha^{-\mathbb{N}})^m \times [0,1]^d) \text{ is less than } d.$

If A(h) goes to 0 on $\operatorname{fr}(\alpha^{-\mathbb{N}})^m$, then apply Cauchy-Binet to see that the frontier of X is the union of the frontiers of the sets $\{F(\{h\} \times [0,1]^d) : h \in \alpha^{-\mathbb{N}}\}$ and the frontier of the union

of family of lower dimensional subsets.

The frontier of X thus has dimension < d as a consequence

of Miller's regular manifold decomposition for sets definable

in $(\mathfrak{R}, \alpha^{-\mathbb{N}})$.

If A(h) does not go to 0 on $(\alpha^{-\mathbb{N}})^m$, then use the lower estimate U, induced structure, and uniform Lipschitz for F to show that the dimension of the frontier must be at least d.

Consequence of the proof:

6. Theorem. Let $S \subseteq \mathbb{R}^{\geq 0}$ be discrete and definable in $(\mathfrak{R}, \alpha^{-\mathbb{N}})$. Then $\sum_{s \in S} s < \infty$ iff *S* is bounded and its only limit point is 0.

Extension to other sequences: Miller and Tyne proved a re-

sult similar to Theorem 2 for certain classes of iteration se-

quences, and results here go through for these structures

(more easily in fact; simpler induced structure).

An interesting consequence of Theorem 1 is:

7. Proposition. Let $\{X_y : y \in Y\}$ be a family of bounded sets definable in $(\mathfrak{R}, \alpha^{-\mathbb{N}})$. Then the set of all y such that $\operatorname{Vol}_d X_y < \infty$ is definable.

Work underway to generalize results to the unbounded case.

FURTHER WORK

Stratification theory for definable sets in $(\mathfrak{R}, \alpha^{-\mathbb{N}})$ where m

becomes a complexity parameter analogous to Cantor-Bendixson rank.

What closed definable sets are 0-sets of definable C^p functions?