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In this talk all models are models of PA

A model M is saturated iff for every A C M with [A| <
M realizes every type with parameters from A.

M,

We say that a tvpe p(v) over a model M is bounded, if it contains
the formula v < a for some a € M.

A model M is boundedly saturated iff for everv A C M with
|A| < |M|, M realizes every bounded type with parameters from A.
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Short Models

Let M be a model of PA and a € M.
Let M(a)=1{bec M :b < t(a) for some Skolem term t}.

s —
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M(a) M
A model M is short if M = M(a) for some a € M.
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Short Saturated Models of PA

A model is short saturated if it is boundedly saturated and short.

That is, a model is short saturated if it is of the form M (a) for some
saturated model M and a € M.

*ﬂ%
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For the rest of the talk we fix M a saturated model of PA and M(a)
a short saturated elementarv initial segment of M.
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Theorem: Let f € Aut(M(a)). Then f can be extended to an
automorphism of M.

In fact, any automorphism of any boundedly saturated elementary
initial segment of M which is not saturated can be extended to an
automorphism of M.
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e Remains to show:

Lemma: Every automorphism of a short
saturated model sends coded sets to coded
sets.
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Sketch of Proof of Lemma

- X (subset of M(a) coded in M by ¢)

#e—g_)
H ¥ () M

e, e, e;__1s a sequence of elements coding initial segments of X.

+1(X) (subset of M(a))
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f(e), f(e,), f(e;) __1s a sequence of elements coding initial segments of {(X).

There 1s an element d in M such the first Ih(f(e)) elements
coded by d are exactly the elements of f(e) for every i  w
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Main Results

Theorem: Let M be a saturated model of Peano Arithmetic. Then
H is a closed normal subgroup of Aut( M) iff there exists an invariant

cut [ C M such that H = Aut(M ).

Since every automorphism of a boundedly saturated models of PA
can be extended to an automorphism of the saturated model we get:

Theorem: Let M be a boundedly saturated model of Peano Arith-
metic. Then H is a closed normal subgroup of Aut{M) iff there
exists an invariant cut I € M such that H = Aut(M ).

Corollary: Let M be a saturated model of Peano Arithmetic. Then
there are short saturated elementary initial segments of M, M(a) and
M(b) whose automorphism groups are non-isomorphic as topological
STOUPS.



* All these results and more are to appearin a
future issue of the Notre Dame Journal of
Formal Logic, in the paper:

Automorphisms of saturated and boundedly
saturated models of arithmetic

Ermek S. Nurkhaidarov and Erez Shochat



Thank Youl!



