Ermek Nurkhaidarov (Penn State) & Erez Shochat (St. Francis College)*

In this talk all models are models of PA

In this talk all models are models of PA

A model M is saturated iff for every $A \subseteq M$ with |A| < |M|, M realizes every type with parameters from A.

In this talk all models are models of PA

A model M is saturated iff for every $A \subseteq M$ with |A| < |M|, M realizes every type with parameters from A.

We say that a type p(v) over a model M is bounded, if it contains the formula v < a for some $a \in M$.

In this talk all models are models of PA

A model M is saturated iff for every $A \subseteq M$ with |A| < |M|, M realizes every type with parameters from A.

We say that a type p(v) over a model M is bounded, if it contains the formula v < a for some $a \in M$.

A model M is boundedly saturated iff for every $A \subseteq M$ with |A| < |M|, M realizes every bounded type with parameters from A.

Every elementary initial segment of a saturated model of PA is boundedly saturated.

Every elementary initial segment of a saturated model of PA is boundedly saturated.

(Schmerl) Every boundedly saturated model of PA is isomorphic to an elementary initial segment of a saturated model of PA.

Every elementary initial segment of a saturated model of PA is boundedly saturated.

(Schmerl) Every boundedly saturated model of PA is isomorphic to an elementary initial segment of a saturated model of PA.

Let M be a model of PA and $a \in M$. Let $M(a) = \{b \in M : b < t(a) \text{ for some Skolem term } t\}$.

Let M be a model of PA and $a \in M$. Let $M(a) = \{b \in M : b < t(a) \text{ for some Skolem term } t\}$.

Let M be a model of PA and $a \in M$. Let $M(a) = \{b \in M : b < t(a) \text{ for some Skolem term } t\}$.

A model M is short if M = M(a) for some $a \in M$.

A model is *short saturated* if it is boundedly saturated and short.

A model is *short saturated* if it is boundedly saturated and short.

That is, a model is short saturated if it is of the form M(a) for some saturated model M and $a \in M$.

A model is *short saturated* if it is boundedly saturated and short.

That is, a model is short saturated if it is of the form M(a) for some saturated model M and $a \in M$.

A model is *short saturated* if it is boundedly saturated and short.

That is, a model is short saturated if it is of the form M(a) for some saturated model M and $a \in M$.

For the rest of the talk we fix M a saturated model of PA and M(a) a short saturated elementary initial segment of M.

Theorem: Let $f \in Aut(M(a))$. Then f can be extended to an automorphism of M.

Theorem: Let $f \in Aut(M(a))$. Then f can be extended to an automorphism of M.

In fact, any automorphism of any boundedly saturated elementary initial segment of M which is not saturated can be extended to an automorphism of M.

Sketch of Proof

 Lemma: Every automorphism of a short saturated model which sends coded sets to coded sets can be extended to an automorphism of the saturated model. ("backand-forth")

Sketch of Proof

- Lemma: Every automorphism of a short saturated model which sends coded sets to coded sets can be extended to an automorphism of the saturated model. ("backand-forth")
- Remains to show:

Lemma: Every automorphism of a short saturated model sends coded sets to coded sets.

·X (subset of M(a) coded in M by c)

·X (subset of M(a) coded in M by c)

 e_1 , e_2 , e_3 , ... is a sequence of elements coding initial segments of X.

·X (subset of M(a) coded in M by c)

 e_1 , e_2 , e_3 , ... is a sequence of elements coding initial segments of X.

 \cdot f(X) (subset of M(a))

$$f(a) f(e_1) f(e_2) f(e_3) M(a)$$
M

·X (subset of M(a) coded in M by c)

 e_1 , e_2 , e_3 , ... is a sequence of elements coding initial segments of X.

 \cdot f(X) (subset of M(a))

$$f(a) f(e_1) f(e_2) f(e_3) M(a)$$

 $f(e_1)$, $f(e_2)$, $f(e_3)$, ... is a sequence of elements coding initial segments of f(X).

·X (subset of M(a) coded in M by c)

 e_1 , e_2 , e_3 , ... is a sequence of elements coding initial segments of X.

 \cdot f(X) (subset of M(a))

 $f(e_1)$, $f(e_2)$, $f(e_3)$, ... is a sequence of elements coding initial segments of f(X). There is an element d in M such the first $lh(f(e_i))$ elements coded by d are exactly the elements of $f(e_i)$ for every $i \in \omega$

Theorem: Let M be a saturated model of Peano Arithmetic. Then H is a closed normal subgroup of $\operatorname{Aut}(M)$ iff there exists an invariant cut $I \subseteq M$ such that $H = \operatorname{Aut}(M)_{(I)}$.

Theorem: Let M be a saturated model of Peano Arithmetic. Then H is a closed normal subgroup of $\operatorname{Aut}(M)$ iff there exists an invariant cut $I \subseteq M$ such that $H = \operatorname{Aut}(M)_{(I)}$.

Since every automorphism of a boundedly saturated models of PA can be extended to an automorphism of the saturated model we get:

Theorem: Let M be a saturated model of Peano Arithmetic. Then H is a closed normal subgroup of $\operatorname{Aut}(M)$ iff there exists an invariant cut $I \subseteq M$ such that $H = \operatorname{Aut}(M)_{(I)}$.

Since every automorphism of a boundedly saturated models of PA can be extended to an automorphism of the saturated model we get:

Theorem: Let M be a boundedly saturated model of Peano Arithmetic. Then H is a closed normal subgroup of Aut(M) iff there exists an invariant cut $I \subseteq M$ such that $H = Aut(M)_{(I)}$.

Theorem: Let M be a saturated model of Peano Arithmetic. Then H is a closed normal subgroup of $\operatorname{Aut}(M)$ iff there exists an invariant cut $I \subseteq M$ such that $H = \operatorname{Aut}(M)_{(I)}$.

Since every automorphism of a boundedly saturated models of PA can be extended to an automorphism of the saturated model we get:

Theorem: Let M be a boundedly saturated model of Peano Arithmetic. Then H is a closed normal subgroup of Aut(M) iff there exists an invariant cut $I \subseteq M$ such that $H = Aut(M)_{(I)}$.

Corollary: Let M be a saturated model of Peano Arithmetic. Then there are short saturated elementary initial segments of M, M(a) and M(b) whose automorphism groups are non-isomorphic as topological groups.

 All these results and more are to appear in a future issue of the Notre Dame Journal of Formal Logic, in the paper:

Automorphisms of saturated and boundedly saturated models of arithmetic

Ermek S. Nurkhaidarov and Erez Shochat

Thank You!