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Motivation

In the 50’s Robinson showed that the class of existentially
closed ordinary differential fields (of characteristic zero) is
elementary. Then, in the 70’s, Blum gave elegant algebraic
axioms:

(ordδf > ordδg) → (∃x f (x) = 0 ∧ g(x) 6= 0).

In 1998, Pierce and Pillay gave axioms of DCF0 in terms of
algebraic varieties and their prolongation: K |= ACF0 and

(V ,W irreducible )∧ (W ⊆ τV )∧ (W projects dominantly)

→ ∃x̄ (x̄ , δx̄) ∈ W

Geometric axiomatizations have been given for other theories
ACFA, DCFA0, DCFp and SCHp,e .
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Motivation

For existentially closed partial differential fields, DCF0,m,
McGrail (2000) gave an algebraic axiomatization generalizing
Blum’s. Other algebraic axiomatizations have been formulated
by Yaffe (2001), Tressl (2005).

A simple counterexample supplied by Hrushovski shows that
the commutativity of the derivations imposes too many
restrictions, so that ACF0 together with

(V ,W irreducible )∧ (W ⊆ τV )∧ (W projects dominantly)

→ ∃x̄ (x̄ , δ1x̄ , . . . , δmx̄) ∈ W

do not axiomatize DCF0,m.

Nonetheless, in 2010, Pierce formulated geometric axioms in
arbitrary characteristic.
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Our Approach

We take a different approach and formulate geometric axioms
for DCF0,m+1 in terms of a relative notion of prolongation.

In other words, we characterize DCF0,m+1 in terms of the
geometry of DCF0,m.

Theorem

(K ,∆,D) |= DCF0,m+1 if and only if

1 (K ,∆) |= DCF0,m

2 For each pair of irreducible ∆-closed sets V and W such that
W ⊆ τD/∆V and W projects ∆-dominantly onto V , there is
a K -point ā ∈ V such that (ā,Dā) ∈ W .
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Notation

(K ,∆) field of characteristic zero with commuting derivations
∆ = {δ1, . . . , δm} , K{x̄} the ∆-ring of ∆-polynomials.

∆-closed set means the zero set of ∆-polynomials, that is
V(f1, . . . , fs).

θx̄ = (θ1x̄ , θ2x̄ , . . . ) the set of algebraic indeterminates
δrm
m · · · δr1

1 xi , ordered w.r.t. the canonical ranking.

For f ∈ K{x̄}, the Jacobian

df (x̄) := (
∂f

∂θ1x̄
(x̄),

∂f

∂θ2x̄
(x̄), . . . ,

∂f

∂θhx̄
(x̄), 0, 0, . . . ).

D : K → K another derivation commuting with ∆.

f D the ∆-polynomial obtained by applying D to the
coefficients of f .
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Definition

Let τD/∆ : K{x̄} → K{x̄ , ȳ} be

τD/∆f (x̄ , ȳ) = df (x̄) · θȳ + f D(x̄)

τD/∆ is a derivation that extends D and commutes with ∆.

Definition of D/∆-prolongation

Let V ⊆ Kn be a ∆-closed set, then τD/∆V ⊆ K 2n is the ∆-closed
set

τD/∆V = V(f , τD/∆f : f ∈ I(V /K )) (1)

I(V /K ) := {f ∈ K{x̄} : f (V ) = 0}.

Does τD/∆V vary uniformly with V ?
If I(V /K ) is differentially generated by f1, . . . , fs then one only
needs to check equation (1) for the fi ’s.
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Characterization of DCF0,m+1

Theorem 1 (L.S.)

(K ,∆,D) |= DCF0,m+1 if and only if

1 (K ,∆) |= DCF0,m

2 For each pair of irreducible ∆-closed sets V and W such that
W ⊆ τD/∆V and W projects ∆-dominantly onto V , there is
a K -point ā ∈ V such that (ā,Dā) ∈ W .

This uses a result of Kolchin about extending ∆-derivations.

Expressing condition (2) in a first-order way is an issue:

Irreducibility of ∆-closed sets?

Containment in τD/∆V ?

∆-dominant projections?
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Pierce-Pillay Axioms

In case m = 0, i.e. ∆ = ∅, Theorem 1 reduces to the Pierce-Pillay
axiomatization of DCF0.

Irreducibility: van den Dries-Schmidt result to check primality
on polynomials rings.

Containment in τD/∆V : Once we know (f1, . . . , fs) is prime,
since K |= ACF0, then one only needs to check equation (1)
for these polynomials.

Dominance: Since ACF0 is strongly minimal, RM=dim.

However, we do not need so much. In fact, the Pierce-Pillay
axioms hold even if one removes the word irreducibility and replace
dominance by surjectivity.

In the case of several derivations we can almost do the same.
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We remove the irreducibility hypothesis using

If X is a K -irreducible component of V then the fibres of τD/∆X
and τD/∆V are generically the same.

To deal with containments in τD/∆V we have

Suppose (K ,∆) |= DCF0,m. If V = V(f1, . . . , fs), then

τD/∆V = V(f1, . . . , fs , τD/∆f1, . . . , τD/∆fs)

so the D/∆-prolongation varies uniformly with V .

∆-dominance?

In case m = 0 we can replace dominance by surjectivity. This
follows from the fact that if a is D-algebraic then Dk+1a is in
K (a,Da, . . . ,Dka), for some k. This is not true with several
derivations!
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For every M ∈ GLm+1(Q), let ∆̄ = {δ̄1, . . . , δ̄m} and D̄ be the
derivations defined by

δ̄1
...

δ̄m

D̄

 = M


δ1
...

δm

D


We write (∆̄, D̄) = M(∆,D).

Theorem (Kolchin)

If a is (∆,D)-algebraic over K , then there is k and a matrix
M ∈ GLm+1(Q) such that, writing (∆̄, D̄) = M(∆,D), we have
that D̄k+1a is in the ∆̄-field generated by a, D̄a, . . . D̄ka.
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The Axioms

Putting the previous results together.

Theorem 2 (L.S.)

(K ,∆,D) |= DCF0,m+1 if and only if

1 K |= ACF0

2 Suppose M ∈ GLm+1(Q), (∆̄, D̄) = M(∆,D),
V = V(f1, . . . , fs) is a nonempty ∆̄-closed set and W is a
∆̄-closed such that

W ⊆ V(f1, . . . , fs , τD̄/∆̄f1, . . . , τD̄/∆̄fs)

and projects onto V . Then there is a K -point ā ∈ V such
that (ā, D̄ā) ∈ W .

Condition (2) is indeed first order. Expressible by infinitely many
sentences, one for each choice of M, f1, . . . , fs and shape of W .
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