GEOMETRIC AXIOMS FOR THE THEORY $\mathrm{DCF}_{0, \mathrm{~m}+1}$

Omar León Sánchez
University of Waterloo

March 24, 2011
(http://arxiv.org/abs/1103.0730)

Motivation

Motivation

- In the 50's Robinson showed that the class of existentially closed ordinary differential fields (of characteristic zero) is elementary. Then, in the 70's, Blum gave elegant algebraic axioms:

$$
\left(\operatorname{ord}_{\delta} f>\operatorname{ord}_{\delta} g\right) \rightarrow(\exists x f(x)=0 \wedge g(x) \neq 0)
$$

Motivation

- In the 50's Robinson showed that the class of existentially closed ordinary differential fields (of characteristic zero) is elementary. Then, in the 70 's, Blum gave elegant algebraic axioms:

$$
\left(\operatorname{ord}_{\delta} f>\operatorname{ord}_{\delta} g\right) \rightarrow(\exists x f(x)=0 \wedge g(x) \neq 0)
$$

- In 1998, Pierce and Pillay gave axioms of $D C F_{0}$ in terms of algebraic varieties and their prolongation: $K \models A C F_{0}$ and
$(V, W$ irreducible $) \wedge(W \subseteq \tau V) \wedge(W$ projects dominantly $)$

$$
\rightarrow \exists \bar{x}(\bar{x}, \delta \bar{x}) \in W
$$

Motivation

- In the 50's Robinson showed that the class of existentially closed ordinary differential fields (of characteristic zero) is elementary. Then, in the 70 's, Blum gave elegant algebraic axioms:

$$
\left(\operatorname{ord}_{\delta} f>\operatorname{ord}_{\delta} g\right) \rightarrow(\exists x f(x)=0 \wedge g(x) \neq 0)
$$

- In 1998, Pierce and Pillay gave axioms of $D C F_{0}$ in terms of algebraic varieties and their prolongation: $K \models A C F_{0}$ and $(V, W$ irreducible $) \wedge(W \subseteq \tau V) \wedge(W$ projects dominantly $)$

$$
\rightarrow \exists \bar{x}(\bar{x}, \delta \bar{x}) \in W
$$

- Geometric axiomatizations have been given for other theories $A C F A, D C F A_{0}, D C F_{p}$ and $S C H_{p, e}$.

Motivation

Motivation

- For existentially closed partial differential fields, $D C F_{0, m}$, McGrail (2000) gave an algebraic axiomatization generalizing Blum's. Other algebraic axiomatizations have been formulated by Yaffe (2001), Tressl (2005).

Motivation

- For existentially closed partial differential fields, $D C F_{0, m}$, McGrail (2000) gave an algebraic axiomatization generalizing Blum's. Other algebraic axiomatizations have been formulated by Yaffe (2001), Tressl (2005).
- A simple counterexample supplied by Hrushovski shows that the commutativity of the derivations imposes too many restrictions, so that $A C F_{0}$ together with
$(V, W$ irreducible $) \wedge(W \subseteq \tau V) \wedge(W$ projects dominantly $)$

$$
\rightarrow \exists \bar{x}\left(\bar{x}, \delta_{1} \bar{x}, \ldots, \delta_{m} \bar{x}\right) \in W
$$

do not axiomatize $D C F_{0, m}$.

Motivation

- For existentially closed partial differential fields, $D C F_{0, m}$, McGrail (2000) gave an algebraic axiomatization generalizing Blum's. Other algebraic axiomatizations have been formulated by Yaffe (2001), Tressl (2005).
- A simple counterexample supplied by Hrushovski shows that the commutativity of the derivations imposes too many restrictions, so that $A C F_{0}$ together with
$(V, W$ irreducible $) \wedge(W \subseteq \tau V) \wedge(W$ projects dominantly $)$

$$
\rightarrow \exists \bar{x}\left(\bar{x}, \delta_{1} \bar{x}, \ldots, \delta_{m} \bar{x}\right) \in W
$$

do not axiomatize $D C F_{0, m}$.

- Nonetheless, in 2010, Pierce formulated geometric axioms in arbitrary characteristic.

Our Approach

- We take a different approach and formulate geometric axioms for $D C F_{0, m+1}$ in terms of a relative notion of prolongation.

Our Approach

- We take a different approach and formulate geometric axioms for $D C F_{0, m+1}$ in terms of a relative notion of prolongation.
- In other words, we characterize $D C F_{0, m+1}$ in terms of the geometry of $D C F_{0, m}$.

Our Approach

- We take a different approach and formulate geometric axioms for $D C F_{0, m+1}$ in terms of a relative notion of prolongation.
- In other words, we characterize $D C F_{0, m+1}$ in terms of the geometry of $D C F_{0, m}$.

Theorem

$(K, \Delta, D) \models D C F_{0, m+1}$ if and only if
(1) $(K, \Delta) \models D C F_{0, m}$
(2) For each pair of irreducible Δ-closed sets V and W such that $W \subseteq \tau_{D / \Delta} V$ and W projects Δ-dominantly onto V, there is a K-point $\bar{a} \in V$ such that $(\bar{a}, D \bar{a}) \in W$.

Notation

Notation

- (K, Δ) field of characteristic zero with commuting derivations $\Delta=\left\{\delta_{1}, \ldots, \delta_{m}\right\}, K\{\bar{x}\}$ the Δ-ring of Δ-polynomials.

Notation

- (K, Δ) field of characteristic zero with commuting derivations $\Delta=\left\{\delta_{1}, \ldots, \delta_{m}\right\}, K\{\bar{x}\}$ the Δ-ring of Δ-polynomials.
- Δ-closed set means the zero set of Δ-polynomials, that is $\mathcal{V}\left(f_{1}, \ldots, f_{s}\right)$.

Notation

- (K, Δ) field of characteristic zero with commuting derivations $\Delta=\left\{\delta_{1}, \ldots, \delta_{m}\right\}, K\{\bar{x}\}$ the Δ-ring of Δ-polynomials.
- Δ-closed set means the zero set of Δ-polynomials, that is $\mathcal{V}\left(f_{1}, \ldots, f_{s}\right)$.
- $\theta \bar{x}=\left(\theta_{1} \bar{x}, \theta_{2} \bar{x}, \ldots\right)$ the set of algebraic indeterminates $\delta_{m}^{r_{m}} \cdots \delta_{1}^{r_{1}} x_{i}$, ordered w.r.t. the canonical ranking.

Notation

- (K, Δ) field of characteristic zero with commuting derivations $\Delta=\left\{\delta_{1}, \ldots, \delta_{m}\right\}, K\{\bar{x}\}$ the Δ-ring of Δ-polynomials.
- Δ-closed set means the zero set of Δ-polynomials, that is $\mathcal{V}\left(f_{1}, \ldots, f_{s}\right)$.
- $\theta \bar{x}=\left(\theta_{1} \bar{x}, \theta_{2} \bar{x}, \ldots\right)$ the set of algebraic indeterminates $\delta_{m}^{r_{m}} \cdots \delta_{1}^{r_{1}} x_{i}$, ordered w.r.t. the canonical ranking.
- For $f \in K\{\bar{x}\}$, the Jacobian

$$
d f(\bar{x}):=\left(\frac{\partial f}{\partial \theta_{1} \bar{x}}(\bar{x}), \frac{\partial f}{\partial \theta_{2} \bar{x}}(\bar{x}), \ldots, \frac{\partial f}{\partial \theta_{h} \bar{x}}(\bar{x}), 0,0, \ldots\right) .
$$

Notation

- (K, Δ) field of characteristic zero with commuting derivations $\Delta=\left\{\delta_{1}, \ldots, \delta_{m}\right\}, K\{\bar{x}\}$ the Δ-ring of Δ-polynomials.
- Δ-closed set means the zero set of Δ-polynomials, that is $\mathcal{V}\left(f_{1}, \ldots, f_{s}\right)$.
- $\theta \bar{x}=\left(\theta_{1} \bar{x}, \theta_{2} \bar{x}, \ldots\right)$ the set of algebraic indeterminates $\delta_{m}^{r_{m}} \cdots \delta_{1}^{r_{1}} x_{i}$, ordered w.r.t. the canonical ranking.
- For $f \in K\{\bar{x}\}$, the Jacobian

$$
d f(\bar{x}):=\left(\frac{\partial f}{\partial \theta_{1} \bar{x}}(\bar{x}), \frac{\partial f}{\partial \theta_{2} \bar{x}}(\bar{x}), \ldots, \frac{\partial f}{\partial \theta_{h} \bar{x}}(\bar{x}), 0,0, \ldots\right) .
$$

- $D: K \rightarrow K$ another derivation commuting with Δ.

Notation

- (K, Δ) field of characteristic zero with commuting derivations $\Delta=\left\{\delta_{1}, \ldots, \delta_{m}\right\}, K\{\bar{x}\}$ the Δ-ring of Δ-polynomials.
- Δ-closed set means the zero set of Δ-polynomials, that is $\mathcal{V}\left(f_{1}, \ldots, f_{s}\right)$.
- $\theta \bar{x}=\left(\theta_{1} \bar{x}, \theta_{2} \bar{x}, \ldots\right)$ the set of algebraic indeterminates $\delta_{m}^{r_{m}} \cdots \delta_{1}^{r_{1}} x_{i}$, ordered w.r.t. the canonical ranking.
- For $f \in K\{\bar{x}\}$, the Jacobian

$$
d f(\bar{x}):=\left(\frac{\partial f}{\partial \theta_{1} \bar{x}}(\bar{x}), \frac{\partial f}{\partial \theta_{2} \bar{x}}(\bar{x}), \ldots, \frac{\partial f}{\partial \theta_{h} \bar{x}}(\bar{x}), 0,0, \ldots\right) .
$$

- $D: K \rightarrow K$ another derivation commuting with Δ.
- f^{D} the Δ-polynomial obtained by applying D to the coefficients of f.

Definition

Let $\tau_{D / \Delta}: K\{\bar{x}\} \rightarrow K\{\bar{x}, \bar{y}\}$ be

$$
\tau_{D / \Delta} f(\bar{x}, \bar{y})=d f(\bar{x}) \cdot \theta \bar{y}+f^{D}(\bar{x})
$$

$\tau_{D / \Delta}$ is a derivation that extends D and commutes with Δ.

Definition

Let $\tau_{D / \Delta}: K\{\bar{x}\} \rightarrow K\{\bar{x}, \bar{y}\}$ be

$$
\tau_{D / \Delta} f(\bar{x}, \bar{y})=d f(\bar{x}) \cdot \theta \bar{y}+f^{D}(\bar{x})
$$

$\tau_{D / \Delta}$ is a derivation that extends D and commutes with Δ.

Definition of D / Δ-prolongation

Let $V \subseteq K^{n}$ be a Δ-closed set, then $\tau_{D / \Delta} V \subseteq K^{2 n}$ is the Δ-closed set

$$
\begin{equation*}
\tau_{D / \Delta} V=\mathcal{V}\left(f, \tau_{D / \Delta} f: f \in \mathcal{I}(V / K)\right) \tag{1}
\end{equation*}
$$

$\mathcal{I}(V / K):=\{f \in K\{\bar{x}\}: f(V)=0\}$.
Does $\tau_{D / \Delta} V$ vary uniformly with V ?
If $\mathcal{I}(V / K)$ is differentially generated by f_{1}, \ldots, f_{s} then one only needs to check equation (1) for the f_{i} 's.

Characterization of $\mathrm{DCF}_{0, m+1}$

Theorem 1 (L.S.)

$(K, \Delta, D) \models D C F_{0, m+1}$ if and only if
(1) $(K, \Delta) \models D C F_{0, m}$
(2) For each pair of irreducible Δ-closed sets V and W such that $W \subseteq \tau_{D / \Delta} V$ and W projects Δ-dominantly onto V, there is a K-point $\bar{a} \in V$ such that $(\bar{a}, D \bar{a}) \in W$.

This uses a result of Kolchin about extending Δ-derivations.

Expressing condition (2) in a first-order way is an issue:

Characterization of $\mathrm{DCF}_{0, m+1}$

Theorem 1 (L.S.)

$(K, \Delta, D) \models D C F_{0, m+1}$ if and only if
(1) $(K, \Delta) \models D C F_{0, m}$
(2) For each pair of irreducible Δ-closed sets V and W such that $W \subseteq \tau_{D / \Delta} V$ and W projects Δ-dominantly onto V, there is a K-point $\bar{a} \in V$ such that $(\bar{a}, D \bar{a}) \in W$.

This uses a result of Kolchin about extending Δ-derivations.

Expressing condition (2) in a first-order way is an issue:

- Irreducibility of Δ-closed sets?

Characterization of $\mathrm{DCF}_{0, m+1}$

Theorem 1 (L.S.)

$(K, \Delta, D) \models D C F_{0, m+1}$ if and only if
(1) $(K, \Delta) \models D C F_{0, m}$
(2) For each pair of irreducible Δ-closed sets V and W such that $W \subseteq \tau_{D / \Delta} V$ and W projects Δ-dominantly onto V, there is a K-point $\bar{a} \in V$ such that $(\bar{a}, D \bar{a}) \in W$.

This uses a result of Kolchin about extending Δ-derivations.

Expressing condition (2) in a first-order way is an issue:

- Irreducibility of Δ-closed sets?
- Containment in $\tau_{D / \Delta} V$?

Characterization of $\mathrm{DCF}_{0, m+1}$

Theorem 1 (L.S.)

$(K, \Delta, D) \models D C F_{0, m+1}$ if and only if
(1) $(K, \Delta) \models D C F_{0, m}$
(2) For each pair of irreducible Δ-closed sets V and W such that $W \subseteq \tau_{D / \Delta} V$ and W projects Δ-dominantly onto V, there is a K-point $\bar{a} \in V$ such that $(\bar{a}, D \bar{a}) \in W$.

This uses a result of Kolchin about extending Δ-derivations.

Expressing condition (2) in a first-order way is an issue:

- Irreducibility of Δ-closed sets?
- Containment in $\tau_{D / \Delta} V$?
- Δ-dominant projections?

Pierce-Pillay Axioms

In case $m=0$, i.e. $\Delta=\emptyset$, Theorem 1 reduces to the Pierce-Pillay axiomatization of $D C F_{0}$.

In case $m=0$, i.e. $\Delta=\emptyset$, Theorem 1 reduces to the Pierce-Pillay axiomatization of $D C F_{0}$.

- Irreducibility: van den Dries-Schmidt result to check primality on polynomials rings.

Pierce-Pillay Axioms

In case $m=0$, i.e. $\Delta=\emptyset$, Theorem 1 reduces to the Pierce-Pillay axiomatization of $D C F_{0}$.

- Irreducibility: van den Dries-Schmidt result to check primality on polynomials rings.
- Containment in $\tau_{D / \Delta} V$: Once we know $\left(f_{1}, \ldots, f_{s}\right)$ is prime, since $K \models A C F_{0}$, then one only needs to check equation (1) for these polynomials.

Pierce-Pillay Axioms

In case $m=0$, i.e. $\Delta=\emptyset$, Theorem 1 reduces to the Pierce-Pillay axiomatization of $D C F_{0}$.

- Irreducibility: van den Dries-Schmidt result to check primality on polynomials rings.
- Containment in $\tau_{D / \Delta} V$: Once we know $\left(f_{1}, \ldots, f_{s}\right)$ is prime, since $K \models A C F_{0}$, then one only needs to check equation (1) for these polynomials.
- Dominance: Since $A C F_{0}$ is strongly minimal, $\mathrm{RM}=\operatorname{dim}$.

Pierce-Pillay Axioms

In case $m=0$, i.e. $\Delta=\emptyset$, Theorem 1 reduces to the Pierce-Pillay axiomatization of $D C F_{0}$.

- Irreducibility: van den Dries-Schmidt result to check primality on polynomials rings.
- Containment in $\tau_{D / \Delta} V$: Once we know $\left(f_{1}, \ldots, f_{s}\right)$ is prime, since $K \models A C F_{0}$, then one only needs to check equation (1) for these polynomials.
- Dominance: Since $A C F_{0}$ is strongly minimal, $\mathrm{RM}=\operatorname{dim}$.

However, we do not need so much. In fact, the Pierce-Pillay axioms hold even if one removes the word irreducibility and replace dominance by surjectivity.

In the case of several derivations we can almost do the same.

We remove the irreducibility hypothesis using
If X is a K-irreducible component of V then the fibres of $\tau_{D / \Delta} X$ and $\tau_{D / \Delta} V$ are generically the same.

To deal with containments in $\tau_{D / \Delta} V$ we have
Suppose $(K, \Delta) \models D C F_{0, m}$. If $V=\mathcal{V}\left(f_{1}, \ldots, f_{s}\right)$, then

$$
\tau_{D / \Delta} V=\mathcal{V}\left(f_{1}, \ldots, f_{s}, \tau_{D / \Delta} f_{1}, \ldots, \tau_{D / \Delta} f_{s}\right)
$$

so the D / Δ-prolongation varies uniformly with V.

We remove the irreducibility hypothesis using
If X is a K-irreducible component of V then the fibres of $\tau_{D / \Delta} X$ and $\tau_{D / \Delta} V$ are generically the same.

To deal with containments in $\tau_{D / \Delta} V$ we have
Suppose $(K, \Delta) \models D C F_{0, m}$. If $V=\mathcal{V}\left(f_{1}, \ldots, f_{s}\right)$, then

$$
\tau_{D / \Delta} V=\mathcal{V}\left(f_{1}, \ldots, f_{s}, \tau_{D / \Delta} f_{1}, \ldots, \tau_{D / \Delta} f_{s}\right)
$$

so the D / Δ-prolongation varies uniformly with V.

Δ-dominance?

In case $m=0$ we can replace dominance by surjectivity. This follows from the fact that if a is D-algebraic then $D^{k+1} a$ is in $K\left(a, D a, \ldots, D^{k} a\right)$, for some k. This is not true with several derivations!

For every $M \in G L_{m+1}(\mathbb{Q})$, let $\bar{\Delta}=\left\{\bar{\delta}_{1}, \ldots, \bar{\delta}_{m}\right\}$ and \bar{D} be the derivations defined by

$$
\left(\begin{array}{c}
\bar{\delta}_{1} \\
\vdots \\
\bar{\delta}_{m} \\
\bar{D}
\end{array}\right)=M\left(\begin{array}{c}
\delta_{1} \\
\vdots \\
\delta_{m} \\
D
\end{array}\right)
$$

We write $(\bar{\Delta}, \bar{D})=M(\Delta, D)$.

For every $M \in G L_{m+1}(\mathbb{Q})$, let $\bar{\Delta}=\left\{\bar{\delta}_{1}, \ldots, \bar{\delta}_{m}\right\}$ and \bar{D} be the derivations defined by

$$
\left(\begin{array}{c}
\bar{\delta}_{1} \\
\vdots \\
\bar{\delta}_{m} \\
\bar{D}
\end{array}\right)=M\left(\begin{array}{c}
\delta_{1} \\
\vdots \\
\delta_{m} \\
D
\end{array}\right)
$$

We write $(\bar{\Delta}, \bar{D})=M(\Delta, D)$.

Theorem (Kolchin)

If a is (Δ, D)-algebraic over K, then there is k and a matrix $M \in G L_{m+1}(\mathbb{Q})$ such that, writing $(\bar{\Delta}, \bar{D})=M(\Delta, D)$, we have that $\bar{D}^{k+1} a$ is in the $\bar{\Delta}$-field generated by $a, \bar{D} a, \ldots \bar{D}^{k} a$.

The Axioms

Putting the previous results together.

The Axioms
Putting the previous results together.

$$
\begin{aligned}
& \text { Theorem } 2(\text { L.S. }) \\
& (K, \Delta, D) \models D C F_{0, m+1} \text { if and only if } \\
& \text { (1) } K \models A C F_{0}
\end{aligned}
$$

The Axioms

Putting the previous results together.

Theorem 2 (L.S.)

$(K, \Delta, D) \models D C F_{0, m+1}$ if and only if
(1) $K \models A C F_{0}$
(2) Suppose $M \in G L_{m+1}(\mathbb{Q}),(\bar{\Delta}, \bar{D})=M(\Delta, D)$, $V=\mathcal{V}\left(f_{1}, \ldots, f_{s}\right)$ is a nonempty $\bar{\Delta}$-closed set and W is a $\bar{\Delta}$-closed such that

$$
W \subseteq \mathcal{V}\left(f_{1}, \ldots, f_{s}, \tau_{\bar{D} / \bar{\Delta}} f_{1}, \ldots, \tau_{\bar{D} / \bar{\Delta}} f_{s}\right)
$$

and projects onto V. Then there is a K-point $\bar{a} \in V$ such that $(\bar{a}, \bar{D} \bar{a}) \in W$.

The Axioms

Putting the previous results together.

Theorem 2 (L.S.)

$(K, \Delta, D) \models D C F_{0, m+1}$ if and only if
(1) $K \models A C F_{0}$
(2) Suppose $M \in G L_{m+1}(\mathbb{Q}),(\bar{\Delta}, \bar{D})=M(\Delta, D)$, $V=\mathcal{V}\left(f_{1}, \ldots, f_{s}\right)$ is a nonempty $\bar{\Delta}$-closed set and W is a $\bar{\Delta}$-closed such that

$$
W \subseteq \mathcal{V}\left(f_{1}, \ldots, f_{s}, \tau_{\bar{D} / \bar{\Delta}} f_{1}, \ldots, \tau_{\bar{D} / \bar{\Delta}} f_{s}\right)
$$

and projects onto V. Then there is a K-point $\bar{a} \in V$ such that $(\bar{a}, \bar{D} \bar{a}) \in W$.

Condition (2) is indeed first order. Expressible by infinitely many sentences, one for each choice of M, f_{1}, \ldots, f_{s} and shape of W.

