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Spectra of Structures and Relations

Defns.
The spectrum of a countable structure S is the set

Spec(S) = {deg(M) :M∼= S & dom(M) = ω}.

Let R be a relation on a computable structure B. The spectrum of R
(as a relation on B) is the set

DgSpB(R) = {deg(Q) : ∃ computable C with (C,Q) ∼= (B,R)}.

We focus on spectra of unary relations (equivalently, suborders) on the
computable dense linear order Q, and spectra of Boolean subalgebras
of the computable atomless Boolean algebra B. Both these structures
are computably ultrahomogeneous and universal for countable models.
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Facts for Linear Orders

Theorem (Frolov, Harizanov, Kalimullin, Kudinov, & Miller 2011)
There exists a relation R on Q such that

DgSpQ(R) = {d : d ′ ≥ 0′′}.

However, by a result of Knight from 1986, this set is not the spectrum
of any linear order.

The converse is impossible: all spectra of linear orders are spectra of
unary relations on Q, by a theorem of Harizanov & Miller (2007).

Theorem (FHKKM 2011)

There exists a relation U on Q such that DgSpQ(U) = {d : d ′ > 0′}.

It is unknown whether {d : d ′ > 0′} can be the spectrum of a LO.
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Construction for the FHKKM Thm.

By a result of Wehner, for each set C ⊆ ω, there exists a family F of
finite sets such that for all D:

F has an enumeration uniformly computable in D ⇐⇒ D >T C.

For a single finite set F = {n1,n2, . . . ,nk}, we code F into a relation
U = UF ,a,b on the interval [a,b] of Q:

-�ea eb
U doubly

dense︸ ︷︷ ︸ U doubly
dense︸ ︷︷ ︸uu0 v0u uu1 v1u uu2 · · · uuk vkuq q q q︸ ︷︷ ︸

n1

q q q q q︸ ︷︷ ︸
n2

q q q︸ ︷︷ ︸
nk

“Doubly dense” means that both U and its complement are dense in
that subinterval.
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Lown Boolean Algebras

Let A be a Boolean algebra, with domain ω.

Theorems
If Spec(A) contains a low degree, then it contains the degree 0
(Downey-Jockusch).
If Spec(A) contains a low2 degree, then it contains the degree 0
(Thurber).
If Spec(A) contains a low3 or low4 degree, then it contains the
degree 0 (Knight-Stob).

It remains open whether this holds for low5 Boolean algebras. By work
of Harris and Montalbán, this problem is quantifiably more difficult.

Question: Do analogous results hold for spectra of Boolean
subalgebras of the computable atomless Boolean algebra B?
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Facts about Boolean Algebras

The computable atomless Boolean algebra B is often represented
as the BA of (finite unions of) intervals [a,b) in Q under ∪ and ∩.
(We include the intervals (−∞,b) and [a,+∞).)
This B is spectrally universal for BA’s, just as Q is for linear orders.
(Csima, Harizanov, M., Montalbán.)
Using results of Jockusch & Soare, H&M showed that there exists
a unary relation R on B whose spectrum contains a low degree,
but not 0. However, this R is not a Boolean subalgebra. Montalbán
asked whether the same can be done for a Boolean subalgebra.

Russell Miller (CUNY) Boolean Subalgebras ASL Berkeley 2011 6 / 13



Double Density and A-atoms for Boolean Algebras
The key to the FHKKM theorem was the ambient structure Q, and the
notion of double density: both U and its complement can be dense in
the same interval in Q.

Defn.
Let A be a Boolean subalgebra of B. A is doubly dense within B if, for
every finite Boolean subalgebra B0 ⊆ B, (B,A) realizes every possible
finite extension of (B0,A ∩ B0) to a larger BA with Boolean subalgebra.

For a nonempty x ∈ B, we say that A is doubly dense within x if x ∈ A
and Ax = {a ∈ A : a ⊆ x} is doubly dense within the induced atomless
Boolean algebra Bx = {y ∈ B : y ⊆ x}.

Defn.
An x ∈ B is an A-atom if x ∈ A and x 6= ∅ and Ax = {∅, x}.

It is ΠA
1 whether a given x ∈ B is an A-atom, and ΠA

2 whether A is
doubly dense within a given x ∈ B.
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Coding a Fourth Jump C(4) into A
Now we build a specific Boolean subalgebra A of B.
Let C(4) = {n0 < n1 < n2 < · · · }. We first code n0 into A as follows:

Subdivide [0,1) into subintervals [0, 1
2), [1

2 ,
3
4), . . ., and put all these

subintervals (but not [0,1) itself) into A.
Do the same with [1,2), then [2,3), up to [2n0 − 1,2n0).
Put [0,2n0) into A.
Make A doubly dense within [2n0 ,2n0 + 1).
Go on to n1, putting [2n0 + 1,2n0 + 1 + 2n1) into A, etc.

We also make A doubly dense within (−∞,0), and close A under
complements and finite unions. Thus A is a Boolean subalgebra of B.

. . . -� [ )[ )[ )[)[)[ )[ )[ )[)[)[ )[ )[ )[)[)
DD · · · DD

0 1
2

3
4 · · · 1 11

2 13
4 · · ·2 · · · 71

2 73
4 · · ·8

Our construction causes A to contain a 2n-fold A-supremum for
precisely those n which lie in C(4). (In this picture, n0 = 3.)
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A-suprema

Defn.
An element x ∈ B is an A-supremum if x is the least upper bound in B
of an infinite set of A-atoms.
Such an x is a single A-supremum if x is not the union of two disjoint
A-suprema.
Finally, x ∈ B is a k-fold A-supremum if x is the union of k disjoint
single A-suprema.

The property of being a single A-supremum is ΠA
3 : it holds iff:

A is not doubly dense within any y ⊆ x ; and
x contains infinitely many A-atoms; and
every A-atom a has either a ⊆ x or a ∩ x = ∅; and
(∀y ∈ B)[either x ∩ y or x − y is contained in a finite union of
A-atoms].

So the property of being a k -fold A-supremum is ΣA
4 , uniformly in k .
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Decoding C(4) from A

The idea is that n ∈ C(4) iff A contains a 2n-fold A-supremum. This
property is ΣA

4 . Therefore, if C is not low4, then C(4) 6≤ ∅(4), and there
can be no computable Ã ⊆ B with (B, Ã) ∼= (B,A).

We claim that, for every C, the process above builds a Boolean
subalgebra A such that deg(C) ∈ DgSpB(A). By taking C to be low5
but not low4, this will prove:

Theorem (M., 2011)
There exists a Boolean subalgebra A of the computable atomless BA
B such that DgSpB(A) contains a low5 degree, but not 0.
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A as a Boolean Algebra

Just as with linear orders, this construction used the ambient structure
B in an essential way. If we regard A as a BA in its own right, then all
k -fold A-suprema turn into single A-suprema, and the coding of C(4)

vanishes. Indeed, this A has a computable copy. So the question
remains:

Question
Does there exist a Boolean algebra whose spectrum contains a low5
degree, but does not contain 0?
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Further Questions

Another question is the subject of current work by R. Steiner:

Question
Do all Boolean subalgebras A ⊆ B for which DgSpB(A) contains a
low4 degree also have computable copies? (Steiner’s conjecture: No.)
If not, then how about low3, low2, and low?

A negative answer to either question would give an example of a set of
Turing degrees which is the spectrum of a Boolean subalgebra of B,
but not of any Boolean algebra (as a structure), and would thus prove
that for BA’s, the ambient structure does enable extra information
content. For BA’s, it remains open whether this is possible. For LO’s,
the ambient structure Q does allow extra information to be coded, but
for graphs, the random graph as ambient structure does not allow any
information which could not already have been coded into some
countable graph.
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Fraı̈ssé Limits, Journal of Symbolic Logic 76 (2011) 1, 66–93.

V.S. Harizanov & R.G. Miller; Spectra of structures and relations,
Journal of Symbolic Logic 72 (2007) 1, 324–348.

Russell Miller (CUNY) Boolean Subalgebras ASL Berkeley 2011 13 / 13


	Main Part

