Separating club guessing principles

March 25, 2011

1

joint with Tetsuya Ishiu

(+) is the statement that there exists a stationary set S consisting of countable elementary substructures of $H(\aleph_2)$, such that for all X, Y in S, if

 $X \cap \omega_1 = Y \cap \omega_1$

and $C \in X$, $D \in Y$ are club subsets of ω_1 , then

 $C \cap D \cap X \cap \omega_1$

is nonempty.

If there exist a proper class of Woodin cardinals, then it is possible to force $\neg(+)$ + "every club contains the indiscernibles of some real" without changing the theory of $L(\mathbb{R})$.

It follows that if there exist proper class many Woodin cardinals, then there exist reals x, y such that the least common indiscernible of x and y is the least common indiscernible of $x^{\#}$ and $y^{\#}$.

Theorem 1 (Moore). $MRP \Rightarrow \neg(+)$

As reformulated by Moore, (+) is equivalent to the statement that there exist

$$\mathcal{F}_{\alpha} \left(\alpha < \omega_1 \right)$$

such that

- each \mathcal{F}_{α} consists of club subsets of α having pairwise cofinal intersection,
- for every club $C \subseteq \omega_1$, $C \cap \alpha \in \mathcal{F}_{\alpha}$ for stationarily many α .

$(+)_n$: the elements of each \mathcal{F}_{α} have *n*-wise cofinal intersection

 $(+)_{<\omega}$: each \mathcal{F}_{α} is closed under intersections

 $(+)^c$: for each club $C \subseteq \omega_1$, $C \cap \alpha \in \mathcal{F}_\alpha$ for club many α

7

Club Guessing is the statement that there exist

$$a_{\alpha} (\alpha < \omega_1)$$

such that

- each a_{α} is a cofinal subset of α ;
- for each club $C \subseteq \omega_1$, $a_{\alpha} \subseteq C$ for stationarily many α .

Strong Club Guessing is the statement that there exist

 $a_{\alpha} (\alpha < \omega_1)$

such that

- each a_{α} is a cofinal subset of α ;
- for each club $C \subseteq \omega_1$, $a_\alpha \setminus C$ is finite for club many α .

Club Guessing implies $(+)_{<\omega}$

2 Question. Is is (ever/always) possible to force the existence of a Club Guessing sequence with a c.c.c. forcing?

If $(+)_{<\omega}$ holds, yes.

If a Strong Club Guessing can be forced by a c.c.c. forcing, then $(+)_{<\omega}^c$ holds.

Using this, one can show that assuming MRP + " NS_{ω_1} is saturated" that is not possible to force Club Guessing with a c.c.c. forcing.

Theorem 3. \neg (+) is consistent with GCH.

Let P(F) be the standard forcing to destroy a witness F to (+). Applying results of Shelah and Moore, showing that a countable support iteration of forcings of the form P(F) does not add reals requires showing :

- P(F) is proper in all proper forcing extensions
- whenever M is the transitive collapse of a suitable elementary submodel, and M embeds elementarily into models N_1 and N_2 , there is (below any condition) an M-generic filter g which is bounded below in any model which contains g as an element and which emebds either of N_1 and N_2 elementarily.

 \diamond^+ is the statement that there exists

 $\mathcal{A}_{\alpha} \left(\alpha < \omega_1 \right)$

such that

- each \mathcal{A}_{α} is a countable collection of subsets of α ,
- for each $X \subseteq \omega_1$ there is a club $D \subseteq \omega_1$ such that $\{X \cap \alpha, D \cap \alpha\} \subseteq \mathcal{A}_{\alpha}$

for all $\alpha \in D$.

Theorem 4. \diamond^+ does not imply $(+)^c$ (and therefore does not imply Strong Club Guessing).

Start with a model of GCH $+ \neg(+)$ and use the usual partial order for forcing \diamond^+ . Given two elementary submodels witnessing a failure of (+), find a filter which is generic for both of them.

Theorem 5. $CH + (+)_{<\omega}$ does not imply Club Guessing. **6 Definition.** A $(+)_{<\omega}$ -sequence $\langle f_{\alpha} : \alpha < \omega \rangle$ is *p*-*point like* if for each \subseteq -descending sequence from each f_{α} there is a member of f_{α} mod-finite contained in each member of the sequence.

Such sequences exist if Club Guessing holds and there is a p-point.

Lemma 7. If F is a p-point like $(+)_{<\omega}$ -sequence, and P is a $(+)_{<\omega}$ -proper forcing for F, then F generates a $(+)_{<\omega}$ -sequence in the P-extension.

Lemma 8. If F is a p-point like $(+)_{<\omega}$ -sequence, then any countable support iteration of the standard forcing to destroy Club Guessing sequences is $(+)_{<\omega}$ -proper and adds no new reals. Trying with \mathbb{P}_{max}

Basic problem: given a model M with a $(+)_{<\omega}$ -sequence

$$F = \langle f_{\alpha} : \alpha < \omega_1^M \rangle,$$

produce an iteration

$$\langle M_{\alpha}, G_{\beta}, j_{\alpha,\gamma} : \beta < \omega_1, \alpha \le \gamma \le \omega_1 \rangle$$

of M so that $j_{0,\omega_1}(F)$ can be expanded to a $(+)_{<\omega}$ -sequence (while destroying any given Club Guessing sequence from M).

Weak condensation for $H(\aleph_2)$ is the statement that there exist \mathcal{N}_{α} ($\alpha < \omega_1$) such that for each $\alpha < \omega_1$,

• \mathcal{N}_{α} is a countable set of transitive collapses of countable elementary submodels of $H(\aleph_2)$ which is linearly ordered by \subseteq ,

• for all
$$N \in \mathcal{N}_{lpha}$$
, $\omega_1^N = lpha$,

and such that for club many countable elementary submodels X of $H(\aleph_2)$, the transitive collapse of X is an element of $\mathcal{N}_{X\cap\omega_1}$. **Theorem 9** (Woodin). Assuming AD, there are inner models with Woodin cardinals satisfying weak condensation for $H(\aleph_2)$.

Theorem 10. Assuming the consistency of AD, there is a model of $(+)_{<\omega}^c$ in which Club Guessing fails.

Club weak club guessing is the statement that there is a sequence

 $\langle a_{\alpha} : \alpha < \omega_1 \rangle$

such that each α_{α} is a cofinal subset of α of ordertype at most ω , and such that for every club $C \subseteq \omega_1$,

 $a_{\alpha} \cap C$

is infinite for club many α .

The *Interval Hitting Principle* is the statement that there exists a set

 $\{b_{\alpha}: \alpha < \omega_1\}$

such that each b_{α} is a cofinal subset of α of ordertype at most ω , and such that for every club

 $C \subseteq \omega_1$

there is a limit ordinal

 $\alpha < \omega_1$

such that for all but finitely many $\beta \in b_{\alpha}$,

 $C \cap [\beta, \min(b_{\alpha} \setminus (\beta + 1))]$

is nonempty.

Club Guessing implies the Interval Hitting Principle.

Theorem 11. Assuming the consistency of AD, there is a model of ZFC in which $(+)_{<\omega}^c$ and Club Weak Club Guessing hold and in which the Interval Hitting Principle fails.