The Arithmetical Hierarchy in the Setting of ω_1 - Computability

Jesse Johnson

Department of Mathematics University of Notre Dame

2011 ASL North American Meeting - March 26, 2011

$$\label{eq:alpha} \begin{split} \omega_1 & \text{-computability} \\ \text{Arithmetical Hierarchy in } \omega_1 \\ \text{Computable infinitary formulas} \end{split}$$

A.H. in ω_1 - computability

- Joint work with Jacob Carson, Julia Knight, Karen Lange, Charles McCoy, John Wallbaum.
- The Arithmetical hierarchy in the setting of ω₁ - computability, preprint.
- Continuation of work from N. Greenberg and J. F. Knight, Computable structure theory in the setting of ω₁.

Introductory definitions Indicies and the jump

Two definitions for the arithmetical hierarchy

We will give two definitions for the arithmetical hierarchy in the setting of ω_1 - computability.

- The first will resemble the definition of the effective Borel Hierarchy.
- The second will resemble the standard definition of the hyper-arithmetical hierarchy.

Introductory definitions Indicies and the jump

ω_1 - computability

Definition

Suppose *R* is a relation of countable arity α .

- *R* is computably enumerable if the set of ordinal codes for sequences in *R* is definable by a Σ₁ formula in (L_{ω1}, ε).
- *R* is **computable** if it is both c.e. and co-c.e.

ヘロト 人間 ト ヘヨト ヘヨト

Introductory definitions Indicies and the jump

Working in ω_1

- We assume that $\mathbb{P}(\omega) \subseteq L_{\omega_1}$.
- Results of Gödel give a computable 1-1 function *g* from the countable ordinals onto L_{ω1}, such that the relation g(α) ∈ g(β) is computable.
- So, computing in ω_1 is essentially the same as computing in L_{ω_1} .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Introductory definitions Indicies and the jump

Indices for c.e. sets

- As in the standard setting, we have a c.e. set of codes for Σ_1 definitions.
- We write W_{α} for the c.e. set with index α .
- All these definitions relativize in the natural way.

イロン 不同 とくほ とくほ とう

æ

Introductory definitions Indicies and the jump

The jump

Definition

- We define the halting set as $K = \{ \alpha : \alpha \in W_{\alpha} \}.$
- For a arbitrary set X, $X' = \{ \alpha : \alpha \in W_{\alpha}^X \}.$
- $X^{(0)} = X$.
- $X^{(\alpha+1)} = (X^{(\alpha)})'.$
- For limit λ, X^(λ) is the set of codes for pairs (β, x) such that β < λ and x ∈ X^(β).
- We write Δ_n^0 for φ^{n-1} for $1 \le n < \omega$.
- We write Δ^0_{α} for φ^{α} for $\alpha \ge \omega$.

First definition for the arithmetical hierarchy

Our first definition of the arithmetical hierarchy resembles the definition of the effective Borel hierarchy.

Definition

Let R be a relation.

- *R* is Σ_0^0 and Π_0^0 if it is computable.
- R is Σ_1^0 if it is c.e.; R is Π_1^0 if the complementary relation, $\neg R$, is c.e.
- For countable $\alpha > 1$, R is Σ^0_{α} if it is a c.e. union of relations, each of which is Π^0_{β} for some $\beta < \alpha$; R is Π^0_{α} if $\neg R$ is Σ^0_{α} .

くロト (過) (目) (日)

Two definitions for the arithmetical hierarchy Comparing the two definitions

Indices for Σ^0_{α} and Π^0_{α} sets

For $\alpha \ge 1$, we may assign indices for the Σ_{α}^{0} and Π_{α}^{0} sets in the natural way.

- For α = 1, we write (Σ, 1, γ) as the index for the c.e. set with index γ.
- The set with index $(\Pi, 1, \gamma)$ is the complement.
- For α > 1, the set with index (Σ, α, γ) is the union of sets with indices in W_γ of the form (Π, β, δ) for some β < α and some countable δ.
- The set with index (Π, α, γ) is the complement.

ヘロン ヘアン ヘビン ヘビン

Second definition for the arithmetical hierarchy

Our second definition for the arithmetical hierarchy resembles the standard definition for the hyper-arithmetical hierarchy.

Definition

Let R be a relation.

- R is Σ_0^0 and Π_0^0 if it is computable.
- R is Σ_1^0 if it is c.e.; R is Π_1^0 if $\neg R$, is c.e.
- For α > 1, R is Σ_α⁰ if it is c.e. relative to Δ_α⁰; R is Π_α⁰ if ¬ R is Σ_α⁰.

We assign indices for the Σ^0_{α} and Π^0_{α} sets in the same way.

・ロト ・ 理 ト ・ ヨ ト ・

Comparing the two definitions

The two definitions agree at finite levels, but disagree at level $\boldsymbol{\omega}$ and beyond.

- Under the first definition, membership of an element into a Σ^0_{α} set occurs if and only if that element is a member of one of the lower Π^0_{β} sets.
- So membership into a Σ^0_{α} set uses information from a single lower level.
- Under the second definition, membership of an element into a Σ^0_{α} set may use a Δ^0_{α} oracle to get information from all lower levels simultaneously.

ヘロン ヘアン ヘビン ヘビン

Two definitions for the arithmetical hierarchy Comparing the two definitions

The two definitions disagree at level ω

Proposition

There is a set *S* that is Δ^0_{ω} under the second definition, but is not Σ^0_{ω} under the first definition.

ヘロト ヘアト ヘビト ヘビト

Two definitions for the arithmetical hierarchy Comparing the two definitions

Proof of the proposition

Proof.

- Define S such that α ∈ S iff α is not in the set with index (Σ, ω, α) under the first definition.
- For each *n*, α, let S_{α,n} be the union of the Σ_n⁰ sets with indices in W_α of the form (Π, k, β) with k < n.
- The union of these sets over all *n* will be the set with index (Σ, ω, α).
- A Δ⁰_ω oracle can determine whether α ∈ S_{n,α} for all n. So S is Δ⁰_ω under the second definition.
- However, *S* cannot be one of the Σ^0_{ω} sets under the first definition.

イロン イボン イヨン イヨ

 $\begin{array}{c} \omega_1 \text{ - computability} \\ \text{Arithmetical Hierarchy in } \omega_1 \\ \text{Computable infinitary formulas} \end{array}$

Definitions Main theorem Conclusion

Computable infinitary formulas

The first definition of the computable infinitary formulas corresponds to the first definition of the arithmetical hierarchy.

Definition

Let *L* be a predicate language with computable symbols. We consider *L*-formulas $\varphi(\bar{x})$ with a countable tuple of variables \bar{x} .

- φ(x̄) is computable Σ₀ and computable Π₀ if it is a quantifier-free formula of L_{ω1,ω}.
- For $\alpha > 0$, $\varphi(\overline{x})$ is computable Σ_{α} if $\varphi \equiv \bigvee_{c.e.} (\exists \overline{u}) \psi_i(\overline{u}, \overline{x})$, where each ψ_i is computable Π_{β} for some $\beta < \alpha$.
- $\varphi(\overline{x})$ is **computable** Π_{α} if $\varphi \equiv \bigwedge_{c.e.} (\forall \overline{u}) \psi_i(\overline{u}, \overline{x})$, where each ψ_i is computable Σ_{β} for some $\beta < \alpha$.

 $\begin{array}{c} \omega_1 \text{ - computability} \\ \text{Arithmetical Hierarchy in } \omega_1 \\ \text{Computable infinitary formulas} \end{array}$

Definitions Main theorem Conclusion

Computable infinitary formulas

The second definition of the computable infinitary formulas corresponds to the second definition of the arithmetical hierarchy.

Definition

- $\varphi(\bar{x})$ is computable Σ_0 and computable Π_0 if it is a quantifier-free formula of $L_{\omega_1,\omega}$.
- For $\alpha > 0$, $\varphi(\overline{x})$ is computable Σ_{α} if $\varphi \equiv \bigvee_{c.e.} (\exists \overline{u}) \psi_i(\overline{u}, \overline{x})$, where each ψ_i is a countable conjunction of formulas, each computable Π_{β} for some $\beta < \alpha$.
- $\varphi(\overline{x})$ is computable Π_{α} if $\varphi \equiv \bigwedge_{c.e.} (\forall \overline{u}) \psi_i(\overline{u}, \overline{x})$, where each ψ_i is a countable disjunction of formulas, each computable Σ_{β} for some $\beta < \alpha$.

ヘロマ ふぼう ふほう

 $\label{eq:alpha} \begin{array}{l} \omega_1 \text{ - computability} \\ \text{Arithmetical Hierarchy in } \omega_1 \\ \text{Computable infinitary formulas} \end{array}$

Definitions Main theorem Conclusion

Proposition on computable infinitary formulas

Using either one of the definitions for the computable infinitary formulas, the following proposition holds and is proved by induction on α .

Proposition

Let \mathcal{A} be an *L*-structure, and let $\varphi(\bar{x})$ be a computable Σ_{α} (computable Π_{α}) *L*-formula. Then the relation defined by $\varphi(\bar{x})$ in \mathcal{A} is Σ_{α}^{0} (Π_{α}^{0}) relative to \mathcal{A} .

ヘロト 人間 ト ヘヨト ヘヨト

 $\label{eq:alpha} \begin{array}{l} \omega_1 \text{ - computability} \\ \text{Arithmetical Hierarchy in } \omega_1 \\ \text{Computable infinitary formulas} \end{array}$

Definitions Main theorem Conclusion

Relatively intrinsically arithmetical relations

Definition

- Let \mathcal{A} be a computable structure, and let R be a relation on \mathcal{A} .
- We say that *R* is **relatively intrinsically** Σ^0_{α} on \mathcal{A} if for all isomorphisms *F* from \mathcal{A} onto a copy \mathcal{B} , F(R) is $\Sigma^0_{\alpha}(\mathcal{B})$.

Definitions Main theorem Conclusion

Main theorem

We now present our main theorem.

Theorem

Let $1 \le \alpha < \omega_1$. For a relation *R* on a computable structure *A*, the following are equivalent:

- *R* is relatively intrinsically Σ^0_{α} on \mathcal{A} .
- **2** *R* is defined by a computable Σ_{α} formula.

 $\label{eq:alpha} \begin{array}{l} \omega_1 \text{ - computability} \\ \text{Arithmetical Hierarchy in } \omega_1 \\ \text{Computable infinitary formulas} \end{array}$

Definitions Main theorem Conclusion

Idea of the proof

- The theorem requires two proofs, one for each definition of the arithmetical hierarchy.
- In either case, the proof for $2 \Rightarrow 1$ follows directly from the proposition.
- This is because a computable Σ_{α} formula is $\Sigma_{\alpha}^{0}(\mathcal{B})$ for any structure *B*. So it must be relatively intrinsically Σ_{α}^{0} in \mathcal{A} .
- The proof for $1 \Rightarrow 2$ invokes the use of forcing by building an isomorphism from a generic copy \mathcal{B} onto \mathcal{A} , where our forcing elements are partial isomorphisms.
- The proof is similar to that of the analogous result in the standard setting.

イロン 不同 とくほ とくほ とう

 $\label{eq:alpha} \begin{array}{l} \omega_1 \mbox{ - computability} \\ \mbox{ Arithmetical Hierarchy in } \omega_1 \\ \mbox{ Computable infinitary formulas} \end{array}$

Definitions Main theorem Conclusion

Which definition is better?

- It is not very efficacious to have two definitions for the arithmetical hierarchy.
- The authors believe that the second definition is a more natural definition.
- Consider our previous construction of the set that highlighted the differences in the definitions.
- In the standard setting, a element enters a Σ_5^0 set based on finitely much Δ_5^0 information.
- It seems natural that a membership into a Σ^0_{ω} set should use countably much Δ^0_{ω} information.

ヘロト ヘアト ヘビト ヘビト

Definitions Main theorem Conclusion

References

- Ash, C. J., & Knight J. F., Mannasse, M., & Slaman, T. Generic copies of countable structures, Anns. of Pure and Appl. Logic, vol 42 (1989), pp. 195-205.
- Chisholm, J, *Effective model theory versus recursive model theory, J. of Symb. Logic*, vol 55 (1990), pp. 1168-1191.
- Greenberg, N. & Knight J. F., Computable structure theory in the setting of ω₁, Perocedings of first EMU workshop, to appear.
- Vanden Boom, M., *The effective Borel hierarchy, Fund. Math.*, vol 195 (2007), pp.269-289.

イロト 不得 とくほ とくほ とう

э.