Coherence, NIP, UDTFS

Hunter Johnson

John Jay College, CUNY

A finite ϕ -type space.

Independence Dimension = 2
Independent Subsets of {a,b,c,d}:

Independent

Independence

Definition: A formula $\varphi(\vec{x},\vec{y})$ is said to be NIP (not the independence property) if $S_{\varphi}(M^{\tilde{\varphi}})$

has no infinite independent set.

The dual notion, Vapnik-Chervonenkis dimension posited independently by Vapnik and Chervonkenkis about the same time.

$$0 \quad 1 \quad 1 \quad 0 = p_3$$

 $1 \quad 1 \quad 0 \quad 0 = p_4$

$$0 \quad 1 \quad 0 \quad 0 = p_5$$

 $1 \quad 0 \quad 0 \quad 1 = p_6$

$$\gamma(y; z_1, z_2) = (y = z_1 \vee y = z_2)$$

$$p_2$$
 defined by $\psi(y,d,d)$

etc.

Some unstable UDTFS families

$$(Q,<)$$

$$\varphi(\bar{x};\bar{y})=$$

Conjecture:

NIP <----> UDTFS

(M. Warmuth, M.C. Laskowski)

Easy: UDTFS ----> NIP

Facts:

NIP + X -----> UDTFS

where X = maximum (Floyd, Warmuth)

stable (Shelah)

(weakly) o-minimal (J., Laskowski)

VC minimal (Guingona) dp-minimal (Guingona)

• Say that $\psi(x,y)$ is *maximum* if Idim(ψ) = d and for all finite B

$$|S_{Q}(B)| = \sum_{i=0}^{d} {|B| \choose i}$$

• Say that ψ (x,y) is *sub-maximum* if Idim(ψ) = d and for all finite B

$$|S_{Q}(B)| < \sum_{i=0}^{d} {|B| \choose i}$$

Facts:

• If ϕ is sub-maximum of Idim 2, then ϕ is UDFTS (Guingona)

Question:

If $\boldsymbol{\varphi}$ is Idim = 2, then $\boldsymbol{\varphi}$ is UDTFS?

Not obvious.

Fact:

If ϕ is Idim 2, but not 2-maximum on an infinite subset of the monster, then ϕ is UDTFS

An interesting property of maximum $oldsymbol{arphi}$;

Say that
$$\rho \in S_{\varphi}(A)$$
, A possibly infinite, has a root if there is some $A_{o} \subseteq A$, independent and non-extendable in A, such that for any $a \in C^{(x)}$, extends to ρ .

$$Q(x,y) = y \le X$$
 $A_0 = 203$

$$(\emptyset,<)$$

$$\longleftrightarrow$$

Roots

 $P = tp_{\varphi}(Q)_{Q}$

$$P' = t P_{\varphi}(\langle O - S \rangle_{Q}),$$

$$0 < S < Q^{+}$$

Fact:

If
$$p \in S_{\phi}(A)$$
, and A_{δ} is a root of p,

then p is definable over A_o .

How?

then t is the unique truth value of φ (x, α) consistent with every trace on A_o . Otherwise A_o U 2 α 3 would be independent.

Fact: (Warmuth, Welzl)

If
$$(x,y)$$
 is maximum of Idim d, then for any finite B and $p \in S_p(B)$, p has a root in B of size d.

Corollary: Maximum --> UDTFS

Question:

Can we fix this up so that it works with p that may not have roots of full size (Idim)?

If so, show NIP = UDTFS

Independent

Guingona's <u>quasi-order on bounded restrictions</u>:

If
$$p \in S_{\varphi}(B)$$
, β , $\beta' \subseteq \beta'$
 S_{φ} $\beta \leq p \beta'$ if $p_{\beta} + p_{\beta'}$

 $= x \cdot 29,63 \leq p_4 \leq c,d3$

• Problem:

There may not be a uniform k so that all types are isolated by a size k subtype.

• Attempt at a solution:

What if in addition to \leq_{p} we are allowed to recruit the quasi-orders of "neighboring" types?

Guingona's result on dp-minimal structures:

Given
$$\varphi(x, y)$$
 there is a natural number k such that For any $\varphi \in S_{\varphi}(B)$, with B finite, there is such that:

If
$$b \in B$$
 is not in the part of p isolated by $p \upharpoonright B'$, then there is a neighboring type $p \upharpoonright B'$ with $p \upharpoonright B' = p \upharpoonright B'$.

Moreover, for any such
$$P'$$
,
$$\varphi(x,b) \in P' \iff \varphi(x,b) \in P$$

Coherence is an attempt to employ this idea outside of the dp-minimal context.

Basic Goal:

a b c d

 $0 \quad 1 \quad 0 \quad 1 = p_1$

 $0 \quad 1 \quad 0 \quad 0 = p_5$ $1 \ 0 \ 0 \ 1 = p \ 6$

Given
$$P \in S_{\Phi}(B)$$
, try to find some

independent set from which we can reconstruct

Fact:

is independent and non-extendable, then

for any beB\Bo

there is a such that
$$t_{\beta}(9_{\beta_0}) + t_{\beta_0}(9_{\delta_0})$$

Definition:

We say that α decides β over β if

Definition: Given $b \in B$ and $B_0 \subseteq B_1$ let $f(b,B_0) = \{a \in C : a \text{ decides } b \text{ over } B_0\}$

Definition:
$$b, b \in B$$
 are said to be inseparable over $B \subseteq B$ if $f(b, B_0) = f(b', B_0)$ and $f(b, B_0) \neq \emptyset$.

Definition: $B \subseteq B$ is coherent at $P \in S_{\Phi}(B)$ if whenever $b, b' \in B$ are inseparable over B_{o} , ta ∈ f(b, Bo) at plas 1 at plas 3

a # Plab3 / a # Plab3

Theorem:

Suppose that for some k, for all
$$P \in S_{cp}(B)$$
 with B finite, there exists $B_0 \in [B]^k$ such that B_0 is coherent at p. Then $C_0(x,y)$ is UDTFS.

Proof:

The condition allows us to definably partition B into

boundedly many partition elements, with p constant on each region.

Remarks

- The k in the above theorem will bound the combinatorial (or VC) density of the formula $\varphi(x,y)$.
- Guingona's argument in the dp-minimal case proves that each formula in a single x variable is coherent, a fortiori.

Coherence makes sense for infinite sets B. Finiteness must be somehow used to prove the existence of coherence (eg by using the Guingona quasi-order) if the formula is strictly NIP.

Remarks:

• What is it good for? Condition is hard to prove.

 It does allow us to tell "at a glance" whether a given finite type space has compression of types down to size d=Idim.

 Conjecture: For any given p, some independent set is always coherent.

