On Uniform Definability of Types over Finite Sets

Vincent Guingona

University of Maryland, College Park

March 26, 2011

For the 2011 ASL Annual North American Meeting, Berkeley, California

Outline

Introduction

2 UDTFS

- Introduction to UDTFS
- dp-Minimality and UDTFS
- Other Formulas and Theories with UDTFS
- The UDTFS Conjecture
- UDTFS Rank

3 Future Work

Kueker Conjecture

Bibliography

Fix a partitioned formula $\varphi(\overline{x}; \overline{y})$ and a set $B \subseteq \mathfrak{C}^{\lg(\overline{y})}$.

Fix a partitioned formula $\varphi(\overline{x}; \overline{y})$ and a set $B \subseteq \mathfrak{C}^{\lg(\overline{y})}$.

Definition.

A φ -type p over B is a maximal collection of consistent formulas of the form $\pm \varphi(\overline{x}; \overline{b})$ for various $\overline{b} \in B$.

Fix a partitioned formula $\varphi(\overline{x}; \overline{y})$ and a set $B \subseteq \mathfrak{C}^{\lg(\overline{y})}$.

Definition.

A φ -type p over B is a maximal collection of consistent formulas of the form $\pm \varphi(\overline{x}; \overline{b})$ for various $\overline{b} \in B$.

Definition.

The φ -**Stone Space** over *B*, denoted $S_{\varphi}(B)$, is the set of all φ -types over *B*.

Stability and Dependence

Definition.

We say a partitioned formula $\varphi(\overline{x}; \overline{y})$ is **stable** if there do not exist $\langle \overline{a}_i : i < \omega \rangle$ and $\langle \overline{b}_j : j < \omega \rangle$ such that, for all $i, j < \omega$

 $\models \varphi(\overline{a}_i; \overline{b}_j) \text{ if and only if } i < j.$

Stability and Dependence

Definition.

We say a partitioned formula $\varphi(\overline{x}; \overline{y})$ is **stable** if there do not exist $\langle \overline{a}_i : i < \omega \rangle$ and $\langle \overline{b}_j : j < \omega \rangle$ such that, for all $i, j < \omega$

 $\models \varphi(\overline{a}_i; \overline{b}_j) \text{ if and only if } i < j.$

Definition.

We say a partitioned formula $\varphi(\overline{x}; \overline{y})$ is **dependent** (or sometimes **NIP**) if there do not exist $\langle \overline{a}_s : s \in \mathcal{P}(\omega) \rangle$ and $\langle \overline{b}_j : j < \omega \rangle$ such that, for all $s \in \mathcal{P}(\omega), j < \omega$ $\models \varphi(\overline{a}_s; \overline{b}_i)$ if and only if $j \in s$.

Definability of Types

A main property of stability, which we wish to generalize to dependence, is definability of types.

Definition.

Fix a formula $\varphi(\overline{x}; \overline{y})$, a φ -type p, and a parameter-definable formula $\psi(\overline{y})$. We say that ψ **defines** p if, for all $\overline{b} \in \text{dom}(p)$, we have that

 $\varphi(\overline{x}; \overline{b}) \in p(\overline{x})$ if and only if $\models \psi(\overline{b})$.

Definability of Types

A main property of stability, which we wish to generalize to dependence, is definability of types.

Definition.

Fix a formula $\varphi(\overline{x}; \overline{y})$, a φ -type p, and a parameter-definable formula $\psi(\overline{y})$. We say that ψ **defines** p if, for all $\overline{b} \in \text{dom}(p)$, we have that

$$\varphi(\overline{x}; \overline{b}) \in p(\overline{x})$$
 if and only if $\models \psi(\overline{b})$.

Theorem (Shelah).

A partitioned formula $\varphi(\overline{x}; \overline{y})$ is stable if and only if there exists formulas $\psi_k(\overline{y}; \overline{z}_1, ..., \overline{z}_n)$ for k < K (finite) such that, for all non-empty sets $B \subseteq \mathfrak{C}^{\lg(\overline{y})}$ and all $p \in S_{\varphi}(B)$, there exists $\overline{c}_1, ..., \overline{c}_n \in B$ and k < K such that, $\psi_k(\overline{y}; \overline{c}_1, ..., \overline{c}_n)$ defines p.

3

★ 문 ► ★ 문 ► ...

Counting Type Spaces

Corollary.

If $\varphi(\overline{x}; \overline{y})$ is stable, then there exists $K, n < \omega$ such that, for any non-empty set $B \subseteq \mathfrak{C}^{\lg(\overline{y})}, |S_{\varphi}(B)| \leq K \cdot |B|^n$.

Counting Type Spaces

Corollary.

If $\varphi(\overline{x}; \overline{y})$ is stable, then there exists $K, n < \omega$ such that, for any non-empty set $B \subseteq \mathfrak{C}^{\lg(\overline{y})}, |S_{\varphi}(B)| \leq K \cdot |B|^n$.

Theorem (Sauer's Lemma).

If $\varphi(\overline{x}; \overline{y})$ is dependent, then there exists $K, n < \omega$ such that, for any non-empty *FINITE* set $B \subseteq \mathfrak{C}^{\lg(\overline{y})}, |S_{\varphi}(B)| \leq K \cdot |B|^n$.

Counting Type Spaces

Corollary.

If $\varphi(\overline{x}; \overline{y})$ is stable, then there exists $K, n < \omega$ such that, for any non-empty set $B \subseteq \mathfrak{C}^{\lg(\overline{y})}, |S_{\varphi}(B)| \leq K \cdot |B|^n$.

Theorem (Sauer's Lemma).

If $\varphi(\overline{x}; \overline{y})$ is dependent, then there exists $K, n < \omega$ such that, for any non-empty *FINITE* set $B \subseteq \mathfrak{C}^{\lg(\overline{y})}, |S_{\varphi}(B)| \leq K \cdot |B|^n$.

Definition.

We say that a dependent formula φ has **VC-density** ℓ if ℓ is the infimum of all $n \in \mathbb{R}_+$ such that the condition in the above theorem holds.

3

UDTFS Introduction

Uniform Definability of Types over Finite Sets

Definition.

We say a partitioned formula $\varphi(\overline{x}; \overline{y})$ has **UDTFS** if there exists formulas $\psi_k(\overline{y}; \overline{z}_1, ..., \overline{z}_n)$ for k < K such that, for all non-empty *FINITE* sets $B \subseteq \mathfrak{C}^{\lg(\overline{y})}$ and all $p \in S_{\varphi}(B)$, there exists $\overline{c}_1, ..., \overline{c}_n \in B$ and k < K such that $\psi_k(\overline{y}; \overline{c}_1, ..., \overline{c}_n)$ defines p. A theory T has UDTFS if all partitioned formulas do.

UDTFS Introduction

Uniform Definability of Types over Finite Sets

Definition.

We say a partitioned formula $\varphi(\overline{x}; \overline{y})$ has **UDTFS** if there exists formulas $\psi_k(\overline{y}; \overline{z}_1, ..., \overline{z}_n)$ for k < K such that, for all non-empty *FINITE* sets $B \subseteq \mathfrak{C}^{\lg(\overline{y})}$ and all $p \in S_{\varphi}(B)$, there exists $\overline{c}_1, ..., \overline{c}_n \in B$ and k < K such that $\psi_k(\overline{y}; \overline{c}_1, ..., \overline{c}_n)$ defines p. A theory T has UDTFS if all partitioned formulas do.

Definition.

We will say that a formula φ with UDTFS has **UDTFS rank** *n* if *n* is minimal such.

Facts about UDTFS

Facts.

- **1** If $\varphi(\overline{x}; \overline{y})$ is stable, then φ has UDTFS.
- **2** If $\varphi(\overline{x}; \overline{y})$ has UDTFS rank *n*, then the VC-density of φ is $\leq n$.
- If $\varphi(\overline{x}; \overline{y})$ has UDTFS, then φ is dependent.

Facts about UDTFS

Facts.

- **1** If $\varphi(\overline{x}; \overline{y})$ is stable, then φ has UDTFS.
- **2** If $\varphi(\overline{x}; \overline{y})$ has UDTFS rank *n*, then the VC-density of φ is $\leq n$.
- If $\varphi(\overline{x}; \overline{y})$ has UDTFS, then φ is dependent.

Theorem (Johnson, Laskowski).

If T is o-minimal, then T has UDTFS.

Facts about UDTFS

Facts.

- If $\varphi(\overline{x}; \overline{y})$ is stable, then φ has UDTFS.
- **2** If $\varphi(\overline{x}; \overline{y})$ has UDTFS rank *n*, then the VC-density of φ is $\leq n$.
- If $\varphi(\overline{x}; \overline{y})$ has UDTFS, then φ is dependent.

Theorem (Johnson, Laskowski).

If T is o-minimal, then T has UDTFS.

 $\label{eq:stable} \begin{array}{c} \mathsf{stable} \\ \Downarrow \\ \mathsf{o}\mathsf{-minimal} \ \Rightarrow \ \mathsf{UDTFS} \ \Rightarrow \ \mathsf{dependent} \end{array}$

dp-Minimal Theories

Definition.

A theory T is **dp-minimal** if there do not exist $\varphi(x; \overline{y})$, $\psi(x; \overline{z})$, $\langle \overline{b}_i : i < \omega \rangle$, and $\langle \overline{c}_j : j < \omega \rangle$ such that, for all $i_0, j_0 < \omega$, the type

$$\{\neg \varphi(\mathbf{x}; \overline{b}_{i_0}), \neg \psi(\mathbf{x}; \overline{c}_{j_0})\} \cup \{\varphi(\mathbf{x}; \overline{b}_i) : i \neq i_0\} \cup \{\psi(\mathbf{x}; \overline{c}_j) : j \neq j_0\}.$$

is consistent.

Examples of dp-Minimal Theories

Examples.

The following theories are dp-minimal:

- Any o-minimal theory or weakly o-minimal theory,
- **2** $\operatorname{Th}(\mathbb{Z};<,+),$
- Th $(\mathbb{Q}_{\rho}; +, \cdot, |, 0, 1)$ (where x|y iff. $v_{\rho}(x) \leq v_{\rho}(y)$),
- Algebraically closed valued fields.
- In general, any VC-minimal theory is dp-minimal.
- Any theory with VC-density ≤ 1 is dp-minimal.

UDTFS dp-Minimality

dp-Minimal Theories have UDTFS

Theorem (G.).

If T is dp-minimal, then T has UDTFS.

- **→ →** •

< D > < A >

э

dp-Minimal Theories have UDTFS

Theorem (G.).

If T is dp-minimal, then T has UDTFS.

Theorem (G.).

If $\varphi(\overline{x}; \overline{y})$ and $N < \omega$ are such that, for all $B \subseteq \mathfrak{C}^{\lg(\overline{y})}$ with |B| = N, $|S_{\varphi}(B)| \leq N(N+1)/2$, then φ has UDTFS (in particular if φ has VC-density < 2, then φ has UDTFS).

Valued Fields and UDTFS

Theorem (G.).

If (K, k, Γ) is a Henselian valued field that has elimination of field quantifiers in the Denef-Pas language, Th(k) has UDTFS, and $Th(\Gamma)$ has UDTFS, then the full theory in the Denef-Pas language has UDTFS.

Valued Fields and UDTFS

Theorem (G.).

If (K, k, Γ) is a Henselian valued field that has elimination of field quantifiers in the Denef-Pas language, Th(k) has UDTFS, and $Th(\Gamma)$ has UDTFS, then the full theory in the Denef-Pas language has UDTFS.

Examples.

The theories of the following structures in the Denef-Pas language have UDTFS:

2
$$\mathbb{R}((t))$$
,

•
$$\mathbb{C}((t^{\mathbb{Q}})).$$

Maximum Formulas have UDTFS

Definition.

A partitioned formula $\varphi(\overline{x}; \overline{y})$ is **maximum of dimension** d if, for all finite $B \subseteq \mathfrak{C}^{\lg(\overline{y})}$,

$$|S_{\varphi}(B)| = \sum_{i \leq d} {|B| \choose i}.$$

Maximum Formulas have UDTFS

Definition.

A partitioned formula $\varphi(\overline{x}; \overline{y})$ is maximum of dimension d if, for all finite $B \subseteq \mathfrak{C}^{\lg(\overline{y})}$,

$$\left|S_{\varphi}(B)\right| = \sum_{i\leq d} {|B|\choose i}.$$

The following proposition follows from the work of Floyd and Warmuth.

Maximum Formulas have UDTFS

Definition.

A partitioned formula $\varphi(\overline{x}; \overline{y})$ is maximum of dimension d if, for all finite $B \subseteq \mathfrak{C}^{\lg(\overline{y})}$,

$$\left|S_{\varphi}(B)\right| = \sum_{i\leq d} {|B|\choose i}.$$

The following proposition follows from the work of Floyd and Warmuth.

Proposition.

If φ is maximum of dimension d, then φ has UDTFS. Furthermore, it has UDTFS rank $\leq d$.

$$\begin{array}{ccc} \text{o-minimal} & \Rightarrow & \text{VC-density} \leq 1 & \text{stable} \\ & & & \downarrow & & \downarrow \\ \text{VC-minimal} & \Rightarrow & \text{dp-minimal} & \Rightarrow & \text{UDTFS} & \Rightarrow & \text{dependent} \end{array}$$

$$\begin{array}{ccc} \text{o-minimal} & \Rightarrow & \text{VC-density} \leq 1 & \text{stable} \\ & & & \downarrow & & \downarrow \\ \text{VC-minimal} & \Rightarrow & \text{dp-minimal} & \Rightarrow & \text{UDTFS} & \Rightarrow & \text{dependent} \end{array}$$

Open Question (Laskowski).

If φ is dependent, then does φ have UDTFS?

$$\begin{array}{ccc} \text{o-minimal} & \Rightarrow & \text{VC-density} \leq 1 & \text{stable} \\ & & & \downarrow & & \downarrow \\ \text{VC-minimal} & \Rightarrow & \text{dp-minimal} & \Rightarrow & \text{UDTFS} & \Rightarrow & \text{dependent} \end{array}$$

Open Question (Laskowski).

If φ is dependent, then does φ have UDTFS?

More Open Questions.

Is UDTFS closed under reducts?

$$\begin{array}{ccc} \text{o-minimal} & \Rightarrow & \text{VC-density} \leq 1 & \text{stable} \\ & & & \downarrow & & \downarrow \\ \text{VC-minimal} & \Rightarrow & \text{dp-minimal} & \Rightarrow & \text{UDTFS} & \Rightarrow & \text{dependent} \end{array}$$

Open Question (Laskowski).

If φ is dependent, then does φ have UDTFS?

More Open Questions.

Is UDTFS closed under reducts?

2 If $\varphi(\overline{x}; \overline{y})$ has UDTFS, then does $\varphi^{\text{opp}}(\overline{y}; \overline{x})$ have UDTFS?

Rank Relations

Recall.

The following hold for any partitioned formula $\varphi(\overline{x}; \overline{y})$:

- **(**) φ is dependent if and only if φ has finite VC-density.
- **2** The VC-density of φ is bounded by the UDTFS rank of φ .

Sufficiency of a Single Variable

Proposition (G.).

If T is such that all formulas of the form $\varphi(x; \overline{y})$ have UDTFS rank $\leq k$, then all formulas of the form $\varphi(\overline{x}; \overline{y})$ have UDTFS rank $\leq k \cdot \lg(\overline{x})$.

Sufficiency of a Single Variable

Proposition (G.).

If T is such that all formulas of the form $\varphi(x; \overline{y})$ have UDTFS rank $\leq k$, then all formulas of the form $\varphi(\overline{x}; \overline{y})$ have UDTFS rank $\leq k \cdot \lg(\overline{x})$.

Corollary.

If T is such that all formulas of the form $\varphi(x; \overline{y})$ have UDTFS rank $\leq k$, then T has VC-density $\leq k$.

Sufficiency of a Single Variable

Proposition (G.).

If T is such that all formulas of the form $\varphi(x; \overline{y})$ have UDTFS rank $\leq k$, then all formulas of the form $\varphi(\overline{x}; \overline{y})$ have UDTFS rank $\leq k \cdot \lg(\overline{x})$.

Corollary.

If T is such that all formulas of the form $\varphi(x; \overline{y})$ have UDTFS rank $\leq k$, then T has VC-density $\leq k$.

The following is originally due to Aschenbrenner, Dolich, Haskell, MacPherson, and Starchenko, but follows as a corollary of the above proposition:

Corollary.

If T is weakly o-minimal, then T has VC-density ≤ 1 .

Future Work: Kueker Conjecture

One goal for future work is to show that the Kueker Conjecture holds for theories with UDTFS.

Future Work: Kueker Conjecture

One goal for future work is to show that the Kueker Conjecture holds for theories with UDTFS.

The Kueker Conjecture.

If T is a theory in a countable language such that every uncountable model of T is \aleph_0 -saturated, then T is \aleph_0 -categorical or \aleph_1 -categorical.

Future Work: Kueker Conjecture

One goal for future work is to show that the Kueker Conjecture holds for theories with UDTFS.

The Kueker Conjecture.

If T is a theory in a countable language such that every uncountable model of T is \aleph_0 -saturated, then T is \aleph_0 -categorical or \aleph_1 -categorical.

Theorem (Hrushovski).

- **1** If *T* is stable, then *T* satisfies the Kueker Conjecture.
- If T interprets an infinite linear order, then T satisfies the Kueker Conjecture.

Partial Results for the Kueker Conjecture

Examples.

The following theories are VC-minimal:

- Any o-minimal theory, including $Th(\mathbb{R}; <, +, \cdot, 0, 1)$.
- **2** Any strongly minimal theory, including $Th(\mathbb{C}; +, \cdot, 0, 1)$.
- The theory of algebraically closed valued fields.

Partial Results for the Kueker Conjecture

Examples.

The following theories are VC-minimal:

- Any o-minimal theory, including $Th(\mathbb{R}; <, +, \cdot, 0, 1)$.
- **2** Any strongly minimal theory, including $Th(\mathbb{C}; +, \cdot, 0, 1)$.
- The theory of algebraically closed valued fields.

Theorem (G.).

If T is VC-minimal, then T satisfies the Kueker Conjecture.

Bibliography

Bibliography I

- M. Aschenbrenner, A. Dolich, D. Haskell, H.D. MacPherson, and S. Starchenko: VC density in some dependent theories, *in preparation*
- H. Adler: Theories controlled by formulas of Vapnik-Chervonenkis codimension 1, *preprint*
- A. Dolich, J. Goodrick, and D. Lippel: dp-Minimality: Basic facts and examples, *arXiv:0910.3189*
- V. Guingona: Dependence and isolated extensions, *Proceedings of the American Mathematical Society* (to appear).
- V. Guingona: On uniform definability of types over finite sets, *arXiv:1005.4924*
- E. Hrushovski: Kueker's conjecture for stable theories, *J. Symbolic Logic* vol 54, 207-220 (1989).

Bibliography II

- H. Johnson and M. C. Laskowski: Compression schemes, stable definable families, and o-minimal structures, *Discrete and Computational Geometry* vol 43, 914-926 (2010).
- S. Shelah: Classification theory and the number of non-isomorphic models, *Studies in Logic and the Foundations of Mathematics, Volume 92, North-Holland Publishing Company, Amsterdam-New York* 1978.
- S. Shelah: Dependent theories and the generic pair conjecture, http://shelah.logic.at/files/900.pdf
- P. Simon: Distal and non-distal theories, preprint