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Introduction
Types

For this talk, we work in a complete, first-order theory T with infinite
models and let € be a large saturated model of T.
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Introduction
Types

For this talk, we work in a complete, first-order theory T with infinite
models and let € be a large saturated model of T.

Fix a partitioned formula ¢(X;¥) and a set B C ¢'8().

Definition.
A p-type p over B is a maximal collection of consistent formulas of the
form £¢(X; b) for various b € B.
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Introduction
Types

For this talk, we work in a complete, first-order theory T with infinite
models and let € be a large saturated model of T.

Fix a partitioned formula ¢(X;¥) and a set B C ¢'8().

A p-type p over B is a maximal collection of consistent formulas of the
form £¢(X; b) for various b € B.

The -Stone Space over B, denoted S, (B), is the set of all -types over
B.
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Introduction
Stability and Dependence

Definition.

We say a partitioned formula ¢(X; y) is stable if there do not exist (3; : i <

w) and (b;j : j < w) such that, for all i,j < w

= ¢(aj; by) if and only if i < j.
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Introduction
Stability and Dependence

We say a partltloned formula ¢(X;y) is stable if there do not exist (3; : i <
w) and (b; : j < w) such that, for all i,j < w

= ¢(aj; by) if and only if i < j.

We say a partitioned formula ©(x;y) is dependent (or sometimes NIP)
if there do not exist (a5 : s € P(w)) and (b; : j < w) such that, for all
sePw),j<w

= ¢(as; b;) if and only if j € s.
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Definability of Types

A main property of stability, which we wish to generalize to dependence, is
definability of types.

Definition.

Fix a formula ¢(X;y), a p-type p, and a parameter-definable formula ¢ (y).
We say that 1 defines p if, for all b € dom(p), we have that

o(x; b) € p(x) if and only if |=v(b).
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Definability of Types

A main property of stability, which we wish to generalize to dependence, is
definability of types.

Fix a formula ¢(X;y), a p-type p, and a parameter-definable formula ¢ (y).
We say that 1 defines p if, for all b € dom(p), we have that

o(x; b) € p(x) if and only if |=v(b).

Theorem (Shelah).

A partitioned formula ¢(X;y) is stable if and only if there exists formulas
Yi(¥;Z1, ..., Zn) for k < K (finite) such that, for all non-empty sets

B C @#) and all p € S,(B), there exists €1, ...,C, € B and k < K such
that, ¥« (y; €1, ..., Cn) defines p.
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Counting Type Spaces

If o(X;y) is stable, then there exists K, n < w such that, for any
non-empty set B C ¢80) |S,(B)| < K - |B|".
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Counting Type Spaces

Corollary.

If o(X;y) is stable, then there exists K, n < w such that, for any
non-empty set B C ¢80) |S,(B)| < K - |B|".

Theorem (Sauer’'s Lemma).

If ¢(x;y) is dependent, then there exists K, n < w such that, for any
non-empty FINITE set B C €8, |S,(B)| < K - |B|".
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Counting Type Spaces

Corollary.

If o(X;y) is stable, then there exists K, n < w such that, for any
non-empty set B C ¢80) |S,(B)| < K - |B|".

Theorem (Sauer’'s Lemma).

If ¢(x;y) is dependent, then there exists K, n < w such that, for any
non-empty FINITE set B C €8, |S,(B)| < K - |B|".

Definition.

We say that a dependent formula ¢ has VC-density /¢ if £ is the infimum
of all n € Ry such that the condition in the above theorem holds.
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UDTFS Introduction

Uniform Definability of Types over Finite Sets

Definition.

We say a partitioned formula ¢(X;y) has UDTFS if there exists formulas
Yi(¥:Z1, ..., Zn) for k < K such that, for all non-empty FINITE sets B C
¢8¥) and all p € S,(B), there exists C1,...,¢, € B and k < K such
that 1« (v; €1, ...,Cn) defines p. A theory T has UDTFS if all partitioned
formulas do.

Vincent Guingona (UMCP) UDTFS March 26, 2011



UDTFS Introduction

Uniform Definability of Types over Finite Sets

We say a partitioned formula ¢(X;y) has UDTFS if there exists formulas
Yi(¥:Z1, ..., Zn) for k < K such that, for all non-empty FINITE sets B C
¢8¥) and all p € S,(B), there exists C1,...,¢, € B and k < K such
that 1« (v; €1, ...,Cn) defines p. A theory T has UDTFS if all partitioned
formulas do.

We will say that a formula ¢ with UDTFS has UDTFS rank n if n is
minimal such.
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UDTFS Introduction

Facts about UDTFS

Q If o(x;y) is stable, then ¢ has UDTFS.
@ If o(x;y) has UDTEFS rank n, then the VC-density of ¢ is < n.
© If o(x;y) has UDTFS, then ¢ is dependent.
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UDTFS Introduction

Facts about UDTFS

Q If o(x;y) is stable, then ¢ has UDTFS.
@ If o(x;y) has UDTEFS rank n, then the VC-density of ¢ is < n.
© If o(x;y) has UDTFS, then ¢ is dependent.

Theorem (Johnson, Laskowski).
If T is o-minimal, then T has UDTFS.

stable

4

o-minimal = UDTFS = dependent
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UDTFS dp-Minimality

dp-Minimal Theories

Definition.
A theory T is dp-minimal if there do not exist ¢(x;¥), ¥(x; Z), (b; : i < w),
and (Cj : j < w) such that, for all iy, jo < w, the type

{=e(x: bi), ~h(x: €)Y U {eo(x; bi) i # i} U{(x: S;) = j # Jo}-

is consistent. )
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UDTFS dp-Minimality

Examples of dp-Minimal Theories

The following theories are dp-minimal:

© Any o-minimal theory or weakly o-minimal theory,
Q@ Th(Z; <,+),

© Th(Qp;+,-,1,0,1) (where x|y iff. vp(x) < vp(y)),
@ Algebraically closed valued fields.

© In general, any VC-minimal theory is dp-minimal.
O Any theory with VC-density < 1 is dp-minimal.
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UDTFS dp-Minimality

dp-Minimal Theories have UDTFS

If T is dp-minimal, then T has UDTFS.
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UDTFS dp-Minimality

dp-Minimal Theories have UDTFS

If T is dp-minimal, then T has UDTFS.

If o(X;¥) and N < w are such that, for all B C ¢'80) with |B| = N,
|So(B)| < N(N +1)/2, then ¢ has UDTFS (in particular if ¢ has
VC-density < 2, then ¢ has UDTFS).
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UDTFS Misc UDTFS

Valued Fields and UDTFS

If (K, k,I) is a Henselian valued field that has elimination of field
quantifiers in the Denef-Pas language, Th(k) has UDTFS, and Th(I') has
UDTEFS, then the full theory in the Denef-Pas language has UDTFS.
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UDTFS Misc UDTFS

Valued Fields and UDTFS

Theorem (G.).

If (K, k,I) is a Henselian valued field that has elimination of field
quantifiers in the Denef-Pas language, Th(k) has UDTFS, and Th(I') has
UDTEFS, then the full theory in the Denef-Pas language has UDTFS.

v
Examples.

The theories of the following structures in the Denef-Pas language have
UDTEFS:

0 Qp,

Q@ R((1)),
@ C((1)).
O C((t?)).
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UDTFS Misc UDTFS

Maximum Formulas have UDTFS

Definition.
A partitioned formula ¢(x;y) is maximum of dimension d if, for all finite

B C ¢le0),
‘SSO(B)‘ = Z <‘?|>

i<d
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UDTFS Misc UDTFS

Maximum Formulas have UDTFS

Definition.
A partitioned formula ¢(x;y) is maximum of dimension d if, for all finite

B C ¢le0),
‘SSO(B)‘ = Z <‘?|>

i<d

The following proposition follows from the work of Floyd and Warmuth.
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UDTFS Misc UDTFS

Maximum Formulas have UDTFS

Definition.

A partitioned formula ¢(x;y) is maximum of dimension d if, for all finite

B C ¢le0),
‘SSO(B)‘ = Z <‘?|>

i<d

The following proposition follows from the work of Floyd and Warmuth.

Proposition.

If ¢ is maximum of dimension d, then ¢ has UDTFS. Furthermore, it has
UDTFS rank < d.
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UDTFS The UDTFS Conjecture

The UDTFS Conjecture

o-minimal = VC-density <1 stable
I U 4
VC-minimal = dp-minimal = UDTFS = dependent
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UDTFS The UDTFS Conjecture

The UDTFS Conjecture

o-minimal = VC-density <1 stable
I U 4
VC-minimal = dp-minimal = UDTFS = dependent

Open Question (Laskowski).
If ¢ is dependent, then does ¢ have UDTFS?
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UDTFS The UDTFS Conjecture

The UDTFS Conjecture

o-minimal = VC-density <1 stable
I U 4
VC-minimal = dp-minimal = UDTFS = dependent

Open Question (Laskowski).
If ¢ is dependent, then does ¢ have UDTFS?

More Open Questions.
@ Is UDTFS closed under reducts?
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UDTFS The UDTFS Conjecture

The UDTFS Conjecture

o-minimal = VC-density <1 stable
I U 4
VC-minimal = dp-minimal = UDTFS = dependent

Open Question (Laskowski).
If ¢ is dependent, then does ¢ have UDTFS?

More Open Questions.
@ Is UDTFS closed under reducts?
@ If ¢(x;y) has UDTFS, then does ©°PP(y; x) have UDTFS?
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UDTFS UDTFS Rank

Rank Relations

The following hold for any partitioned formula ¢(X;¥):
@ ¢ is dependent if and only if ¢ has finite VC-density.
@ The VC-density of ¢ is bounded by the UDTFS rank of ¢.
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UDTFS UDTFS Rank

Sufficiency of a Single Variable

Proposition (G.).
If T is such that all formulas of the form ¢(x;y) have UDTFS rank < k,
then all formulas of the form ¢(x;y) have UDTFS rank < k - 1g(x).
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UDTFS UDTFS Rank

Sufficiency of a Single Variable

Proposition (G.).

If T is such that all formulas of the form ¢(x;y) have UDTFS rank < k,
then all formulas of the form ¢ (X;y) have UDTFS rank < k - 1g(X%).

If T is such that all formulas of the form ¢(x;y) have UDTFS rank < k,
then T has VC-density < k.
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UDTFS UDTFS Rank

Sufficiency of a Single Variable

Proposition (G.).

If T is such that all formulas of the form ¢(x;y) have UDTFS rank < k,
then all formulas of the form ¢ (X;y) have UDTFS rank < k - 1g(X%).

If T is such that all formulas of the form ¢(x;y) have UDTFS rank < k,
then T has VC-density < k.

The following is originally due to Aschenbrenner, Dolich, Haskell,
MacPherson, and Starchenko, but follows as a corollary of the above
proposition:

If T is weakly o-minimal, then T has VC-density < 1.
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Future Work Kueker Conjecture

Future Work: Kueker Conjecture

One goal for future work is to show that the Kueker Conjecture holds for
theories with UDTFS.
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Future Work Kueker Conjecture

Future Work: Kueker Conjecture

One goal for future work is to show that the Kueker Conjecture holds for
theories with UDTFS.

The Kueker Conjecture.

If T is a theory in a countable language such that every uncountable model
of T is Ng-saturated, then T is Ng-categorical or Nj-categorical.
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Future Work Kueker Conjecture

Future Work: Kueker Conjecture

One goal for future work is to show that the Kueker Conjecture holds for
theories with UDTFS.

The Kueker Conjecture.

If T is a theory in a countable language such that every uncountable model
of T is Ng-saturated, then T is Ng-categorical or Nj-categorical.

v

Theorem (Hrushovski).
Q If T is stable, then T satisfies the Kueker Conjecture.

@ |If T interprets an infinite linear order, then T satisfies the Kueker
Conjecture.
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Future Work Kueker Conjecture

Partial Results for the Kueker Conjecture

The following theories are VC-minimal:
@ Any o-minimal theory, including Th(R; <, +,-,0,1).
@ Any strongly minimal theory, including Th(C; +, -, 0, 1).
© The theory of algebraically closed valued fields.
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Future Work Kueker Conjecture

Partial Results for the Kueker Conjecture

The following theories are VC-minimal:
@ Any o-minimal theory, including Th(R; <, +,-,0,1).
@ Any strongly minimal theory, including Th(C; +, -, 0, 1).
© The theory of algebraically closed valued fields.

If T is VC-minimal, then T satisfies the Kueker Conjecture.
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