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I will describe a fascinating mathematical object, the �eld T of

transseries. It is an ordered di�erential �eld extension of R and is a

kind of universal domain for real di�erential algebra.

Conjecture: the elementary theory of T is model complete, and is

the model companion of the theory of H-�elds.

After discussing T we introduce H-�elds, and then sketch some

partial results towards this conjecture.

(Joint work with Aschenbrenner and van der Hoeven)



Reminder on Laurent series
The ordered di�erential �eld R((x−1)) of formal Laurent series in

descending powers of x over R consists of all series of the form

f (x) = anx
n + an−1x

n−1 + · · ·+ a1x︸ ︷︷ ︸
in�nite part of f

+ a0 + a−1x
−1 + a−2x

−2 + · · ·︸ ︷︷ ︸
�nite part of f

x > R for the ordering, x ′ = 1 for the derivation. Defects:

I x−1 has no antiderivative log x in R((x−1)) .

I There is no natural exponentiation de�ned on all of R((x−1));
such an operation should satisfy exp x > xn for all n.

Exponentiation does make sense for the �nite elements of R((x−1)):

exp(a0 + a−1x
−1 + a−2x

−2 + · · · )

=ea0
∞∑
n=0

1

n!
(a−1x

−1 + a−2x
−2 + · · · )n

=ea0(1 + b1x
−1 + b2x

−2 + · · · )



The �eld of transseries

To remove these defects we extend R((x−1)) to an ordered

di�erential �eld T of transseries: series of transmonomials ( or

logarithmic-exponential monomials) arranged from left to right in

decreasing order and multiplied by real coe�cients, for example

ee
x−3ex2 +5x1/2−log x+1+x−1+x−2+x−3+· · ·+e−x +x−1e−x .

The reversed order type of the set of transmonomials that occur in

a given transseries series can be any countable ordinal. (For the

series displayed it is ω + 2.) Such series occur for example in

solving implicit equations of the form P(x , y , ex , ey ) = 0 for y as

x → +∞, where P is a polynomial in 4 variables over R. The
Stirling expansion for the Gamma function is also a transseries.

Transseries also arise naturally as formal solutions to algebraic

di�erential equations.



Transseries
Some typical computations in T:

I Taking a reciprocal

1

x − x2e−x
=

1

x(1− xe−x)
= x−1(1 + xe−x + x2e−2x + · · · )

= x−1 + e−x + xe−2x + · · ·

I Formal Integration∫
ex

x
dx = constant +

∞∑
n=0

n!x−1−nex ( diverges).

I Formal Composition

Let f (x) = x + log x and g(x) = x log x . Then

f (g(x)) = x log x + log(x log x)

= x log x + log x + log(log x)



Transseries

I Formal Composition continued

g(f (x)) = (x + log x) log(x + log x)

= x log x + (log x)2 + (x + log x)
∞∑
n=1

(−1)n+1

n

( log x
x

)n
= x log x + (log x)2 + log x +

∞∑
n=1

(−1)n+1

n(n + 1)

(log x)n+1

xn
.

I Compositional Inversion

The transseries g(x) = x log x has a compositional inverse of

the form
x

log x

(
1 + F

( log log x
log x

,
1

log x

))
where F (X ,Y ) is an ordinary convergent power series in the

two variables X and Y over R.



Properties of T

Some key properties of T: it is a real closed ordered �eld extension

of R, and is equipped with natural operations of exponentiation

(exp) and (termwise) di�erentiation, f 7→ f ′, such that

exp(T) = T>0, {f ′ : f ∈ T} = T, {f ∈ T : f ′ = 0} = R.

As an exponential ordered �eld T is an elementary extension of the

real exponential �eld. The iterated exponentials

x , exp x , exp(exp(x)), . . .

are co�nal in the ordering of T.



Conjectures about T

From now on we consider T as an ordered di�erential �eld.

Conjecture 1: T is model complete.

Conjecture 2: If X ⊆ Tn is de�nable, then X ∩ Rn is semialgebraic.

Conjecture 3: T is asymptotically o-minimal, that is, for each

de�nable X ⊆ T either all su�ciently large f ∈ T are in X , or all

su�ciently large f ∈ T are outside X .



Positive evidence

Asymptotic o-minimality holds for quanti�er-free de�nable X ⊆ T.

Best evidence for model-completeness of T: the detailed analysis by

van der Hoeven in �Transseries and Real Di�erential Algebra"

(Springer Lecture Notes 1888) of the set of zeros in T of any given

di�erential polynomial in one variable over T. He proved:

Theorem
Given any di�erential polynomial P(Y ) ∈ T{Y } and f , h ∈ T with

P(f ) < 0 < P(h), there is g ∈ T with f < g < h and P(g) = 0.

Here and later K{Y } = K [Y ,Y ′,Y ′′, . . . ] is the ring of di�erential

polynomials in the indeterminate Y over a di�erential �eld K .



Linear di�erential operators over T

Another analogy with the real �eld is that linear di�erential

operators over T behave much like one-variable polynomials over R.
A linear di�erential operator over T is an operator

A = a0 + a1D + · · ·+ anD
n on T (D = the derivation, all ai ∈ T);

it de�nes the same function on T as the di�erential polynomial

a0Y + a1Y
′ + · · ·+ anY

(n). The linear di�erential operators over T
form a noncommutative ring under composition.

Theorem
Each linear di�erential operator over T of order n > 0 is surjective

as a map T→ T, and is a product (composition) of operators

a + bD of order 1 and operators a + bD + cD2 of order 2.



The role of H-�elds

Abraham Robinson taught us to think about model completeness in

an algebraic way. Accordingly, we introduce a class of ordered

di�erential �elds, the so-called H-�elds. These are de�ned so as to

share certain basic (universal) properties with T. The challenge is

then to show that the �existentially closed� H-�elds are exactly the

H-�elds that share certain deeper �rst-order properties with T. If
we can achieve this, then T will be model complete.

An H-�eld K is existentially closed if every di�erential polynomial

over K with a zero in an H-�eld extension of K has a zero in K .



H-�elds

Let K be an ordered di�erential �eld, and put

C = {a ∈ K : a′ = 0} (constant �eld of K )

O = {a ∈ K : |a| ≤ c for some c ∈ C>0} (convex hull of C in K )

m(O) = {a ∈ K : |a| < c for all c ∈ C>0} (maximal ideal of O)

We call K an H-�eld if the following conditions are satis�ed:

(H1) O = C + m(O),

(H2) a > C =⇒ a′ > 0,

(H3) a ∈ m(O) =⇒ a′ ∈ m(O).

Examples of H-�elds: Hardy �elds containing R such as R(x , ex),
the ordered di�erential �eld R((x−1)) of Laurent series, T.



Liouville closed H-�elds

The real closure of an H-�eld is again an H-�eld. Call an H-�eld K

Liouville closed if it is real closed and each di�erential equation

y ′ = ay + b with a, b ∈ K has a solution in K . For example, T is

Liouville closed. A Liouville closure of an H-�eld K is a minimal

Liouville closed H-�eld extension of K .

Theorem
Each H-�eld has exactly one or exactly two Liouville closures.

Whether we have one or two Liouville closures is controlled by a key

trichotomy in the class of H-�elds. We discuss this in the next slide.



Trichotomy for H-�elds

A key feature of any H-�eld K is its valuation v whose valuation

ring is the convex hull O of C . Let Γ be the value group of v and

Γ∗ := Γ \ {0}. The derivation of K induces a function

γ = v(a) 7→ γ′ = v(a′) : Γ∗ → Γ

and we put Γ† := {γ′ − γ : γ ∈ Γ∗}. Then Γ† < (Γ>0)′, and
exactly one of the following holds:

1. Γ† < γ < (Γ>0)′ for some (necessarily unique) γ;

2. Γ† has a largest element;

3. sup Γ† does not exist.

If K = C we are in case 1, R((x−1)) falls under case 2, and Liouville

closed H-�elds under case 3. In case 1 there are two Liouville

closures of K , and in case 2 there is only one.



Immediate Extensions of H-�elds

For a long time we couldn't prove that every H-�eld has a case 1

extension. We only knew it for maximally valued H-�elds in case 3.

But two years ago we showed:

Theorem
Every real closed H-�eld falling under case 3 has an immediate

H-�eld extension that is maximally valued.

Complication: such an extension is not in general unique.

Corollary

Each H-�eld has a case 1 extension (and thus a case 2 extension).



Consequences for existentially closed H-�elds

Using the theorem on the previous slides, many known results

about T can now be shown to go through for existentially closed

H-�elds. For example, maximally valued H-�elds are di�erentially

henselian, and it follows that existentially closed H-�elds are also

di�erentially henselian. The de�nition of �di�erentially henselian� is

not so obvious, and involves linear di�erential operators.

A linear di�erential operator over a di�erential �eld K is an

operator a0 + a1D + · · ·+ anD
n on K , where all ai ∈ K , and D

stands for the derivation operator. They form a ring under

composition, with Da = aD + a′ for a ∈ K .



Linear di�erential operators

Let K be an H-�eld and A = a0 + a1D + · · ·+ anD
n a linear

di�erential operator over K , n ≥ 1, an 6= 0.

v(A) := min
i

vai .

Theorem
The operator A induces an increasing bijection Av : Γ→ Γ given by

Av (va) = v(Aa), a ∈ K×.

Theorem
If K is existentially closed, then A : K → K is surjective, and A is a

product (composition) of operators a + bD of order 1 and operators

a + bD + cD2 of order 2.

Both theorems were previously known for K = T.



De�nition of di�erentially henselian

An H-�eld K is di�erentially henselian if it has the following

property: Let P(Y ) ∈ O{Y } and a ∈ O, so

P(a+Y ) = P(a)+a0Y +a1Y
′+· · ·+anY

(n)+ terms of degree ≥ 2,

and suppose that P(a) 6= 0, P(a) ∈ m(O), and min vai = 0. Let

A := a0 + a1D + · · ·+ anD
n, and take the unique γ such that

Av (γ) = v(P(a)). Then there is b ∈ O such that P(b) = 0 and

v(a − b) = γ + δ, with mδ < v(P(a)) for all m.



A pseudocauchy sequence induced by iterated logarithms

Set a† := a′

a
, the logarithmic derivative of a.

In T we consider the sequence (`n) with

`0 = x , `n+1 = log `n.

This sequence is coinitial in T>R, and

−`††n =
1

`0
+

1

`0`1
+ · · ·+ 1

`0`1 · · · `n
.

Then (−`††n ) is a pc-sequence without a pseudolimit in T. (It does
have a pseudolimit

∑∞
n=0

1
`0`1···`n in an H-�eld extension of T.)



Another important pseudocauchy sequence

Set %(b) := (b†)2 − 2(b†)′. Then

%(`†n) =
1

`20
+

1

`20`
2
1

+ · · ·+ 1

`20`
2
1 · · · `2n

also gives a pc-sequence without pseudolimit in T. These facts can

be converted into elementary properties of T that seem to be key

to further model-theoretic analysis:

(A1) ∀a∃b
[
v(a − b†) ≤ vb < (Γ>0)′

]
;

(A2) ∀a∃b
[
v(a − %(b)) ≤ 2vb, vb < (Γ>0)′

]
.

A trouble-free H-�eld is one that is real closed, in case 3, and

satis�es (A1) and (A2).



Trouble-free H-�elds

Every existentially closed H-�eld is trouble-free.

Theorem
Let K be a trouble-free H-�eld and P ∈ K{Y }, P 6= 0. Then there

are α ∈ Γ, a ∈ K>C and m, n ∈ N such that

C < y < a =⇒ v(P(y)) = α + mvy + nvy ′

for all y in all H-�eld extensions of K.

Conjecture: if K is a trouble-free H-�eld, then it has a unique

maximal immediate trouble-free H-�eld extension.
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