I will describe a fascinating mathematical object, the field \mathbb{T} of transseries. It is an ordered differential field extension of \mathbb{R} and is a kind of universal domain for real differential algebra.

Conjecture: the elementary theory of \mathbb{T} is model complete, and is the model companion of the theory of H-fields.

After discussing \mathbb{T} we introduce H-fields, and then sketch some partial results towards this conjecture.

(Joint work with Aschenbrenner and van der Hoeven)
Reminder on Laurent series

The ordered differential field $\mathbb{R}((x^{-1}))$ of formal Laurent series in *descending* powers of x over \mathbb{R} consists of all series of the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 + a_{-1} x^{-1} + a_{-2} x^{-2} + \cdots$$

$x > \mathbb{R}$ for the ordering, $x' = 1$ for the derivation. **Defects:**

- x^{-1} has no antiderivative $\log x$ in $\mathbb{R}((x^{-1}))$.
- There is no natural exponentiation defined on all of $\mathbb{R}((x^{-1}))$; such an operation should satisfy $\exp x > x^n$ for all n.

Exponentiation does make sense for the *finite* elements of $\mathbb{R}((x^{-1}))$:

$$\exp(a_0 + a_{-1} x^{-1} + a_{-2} x^{-2} + \cdots)$$

$$= e^{a_0} \sum_{n=0}^{\infty} \frac{1}{n!} (a_{-1} x^{-1} + a_{-2} x^{-2} + \cdots)^n$$

$$= e^{a_0} (1 + b_1 x^{-1} + b_2 x^{-2} + \cdots)$$
The field of transseries

To remove these defects we extend $\mathbb{R}((x^{-1}))$ to an ordered differential field \mathbb{T} of transseries: series of transmonomials (or logarithmic-exponential monomials) arranged from left to right in decreasing order and multiplied by real coefficients, for example

$$e^{e^x} - 3e^{x^2} + 5x^{1/2} - \log x + 1 + x^{-1} + x^{-2} + x^{-3} + \cdots + e^{-x} + x^{-1}e^{-x}.$$

The reversed order type of the set of transmonomials that occur in a given transseries series can be any countable ordinal. (For the series displayed it is $\omega + 2$.) Such series occur for example in solving implicit equations of the form $P(x, y, e^x, e^y) = 0$ for y as $x \rightarrow +\infty$, where P is a polynomial in 4 variables over \mathbb{R}. The Stirling expansion for the Gamma function is also a transseries. Transseries also arise naturally as formal solutions to algebraic differential equations.
Transseries

Some typical computations in \mathbb{T}:

- **Taking a reciprocal**

\[
\frac{1}{x - x^2e^{-x}} = \frac{1}{x(1 - xe^{-x})} = x^{-1}(1 + xe^{-x} + x^2e^{-2x} + \cdots)
\]

\[
= x^{-1} + e^{-x} + xe^{-2x} + \cdots
\]

- **Formal Integration**

\[
\int \frac{e^x}{x} \, dx = constant + \sum_{n=0}^{\infty} n!x^{-1-n}e^x \quad (\text{diverges}).
\]

- **Formal Composition**

Let $f(x) = x + \log x$ and $g(x) = x \log x$. Then

\[
f(g(x)) = x \log x + \log(x \log x)
\]

\[
= x \log x + \log x + \log(\log x)
\]
Transseries

- **Formal Composition continued**

\[g(f(x)) = (x + \log x) \log(x + \log x) \]

\[= x \log x + (\log x)^2 + (x + \log x) \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \left(\frac{\log x}{x} \right)^n \]

\[= x \log x + (\log x)^2 + \log x + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n + 1)} \left(\frac{\log x}{x^n} \right)^{n+1}. \]

- **Compositional Inversion**

The transseries \(g(x) = x \log x \) has a compositional inverse of the form

\[\frac{x}{\log x} \left(1 + F\left(\frac{\log \log x}{\log x}, \frac{1}{\log x} \right) \right) \]

where \(F(X, Y) \) is an ordinary convergent power series in the two variables \(X \) and \(Y \) over \(\mathbb{R} \).
Some key properties of \mathbb{T}: it is a real closed ordered field extension of \mathbb{R}, and is equipped with natural operations of *exponentiation* (\exp) and (termwise) differentiation, $f \mapsto f'$, such that

\[
\exp(\mathbb{T}) = \mathbb{T}^>0, \quad \{f' : f \in \mathbb{T}\} = \mathbb{T}, \quad \{f \in \mathbb{T} : f' = 0\} = \mathbb{R}.
\]

As an exponential ordered field \mathbb{T} is an elementary extension of the real exponential field. The iterated exponentials

\[
x, \exp x, \exp(\exp(x)), \ldots
\]

are cofinal in the ordering of \mathbb{T}.

Conjectures about \mathbb{T}

From now on we consider \mathbb{T} as an ordered differential field.

Conjecture 1: \mathbb{T} is model complete.

Conjecture 2: If $X \subseteq \mathbb{T}^n$ is definable, then $X \cap \mathbb{R}^n$ is semialgebraic.

Conjecture 3: \mathbb{T} is asymptotically o-minimal, that is, for each definable $X \subseteq \mathbb{T}$ either all sufficiently large $f \in \mathbb{T}$ are in X, or all sufficiently large $f \in \mathbb{T}$ are outside X.
Asymptotic o-minimality holds for quantifier-free definable $X \subseteq T$.

Best evidence for model-completeness of T: the detailed analysis by van der Hoeven in “Transseries and Real Differential Algebra” (Springer Lecture Notes 1888) of the set of zeros in T of any given differential polynomial in one variable over T. He proved:

Theorem

*Given any differential polynomial $P(Y) \in T\{Y\}$ and $f, h \in T$ with $P(f) < 0 < P(h)$, there is $g \in T$ with $f < g < h$ and $P(g) = 0$.***

Here and later $K\{Y\} = K[Y, Y', Y'', \ldots]$ is the ring of differential polynomials in the indeterminate Y over a differential field K.
Linear differential operators over \mathbb{T}

Another analogy with the real field is that linear differential operators over \mathbb{T} behave much like one-variable polynomials over \mathbb{R}. A linear differential operator over \mathbb{T} is an operator

$$A = a_0 + a_1 D + \cdots + a_n D^n$$

on \mathbb{T} (D = the derivation, all $a_i \in \mathbb{T}$); it defines the same function on \mathbb{T} as the differential polynomial $a_0 Y + a_1 Y' + \cdots + a_n Y^{(n)}$. The linear differential operators over \mathbb{T} form a noncommutative ring under composition.

Theorem

Each linear differential operator over \mathbb{T} of order $n > 0$ is surjective as a map $\mathbb{T} \to \mathbb{T}$, and is a product (composition) of operators $a + bD$ of order 1 and operators $a + bD + cD^2$ of order 2.
The role of H-fields

Abraham Robinson taught us to think about model completeness in an algebraic way. Accordingly, we introduce a class of ordered differential fields, the so-called H-fields. These are defined so as to share certain basic (universal) properties with T. The challenge is then to show that the "existentially closed" H-fields are exactly the H-fields that share certain deeper first-order properties with T. If we can achieve this, then T will be model complete.

An H-field K is existentially closed if every differential polynomial over K with a zero in an H-field extension of K has a zero in K.
H-fields

Let K be an ordered differential field, and put

\[C = \{ a \in K : a' = 0 \} \] (constant field of K)

\[\mathcal{O} = \{ a \in K : |a| \leq c \text{ for some } c \in C^>^0 \} \] (convex hull of C in K)

\[m(\mathcal{O}) = \{ a \in K : |a| < c \text{ for all } c \in C^>^0 \} \] (maximal ideal of \mathcal{O})

We call K an H-field if the following conditions are satisfied:

(H1) \[\mathcal{O} = C + m(\mathcal{O}), \]

(H2) \[a > C \implies a' > 0, \]

(H3) \[a \in m(\mathcal{O}) \implies a' \in m(\mathcal{O}). \]

Examples of H-fields: Hardy fields containing \mathbb{R} such as $\mathbb{R}(x, e^x)$, the ordered differential field $\mathbb{R}((x^{-1}))$ of Laurent series, \mathbb{T}.
Liouville closed H-fields

The real closure of an H-field is again an H-field. Call an H-field K *Liouville closed* if it is real closed and each differential equation $y' = ay + b$ with $a, b \in K$ has a solution in K. For example, \mathbb{T} is Liouville closed. A *Liouville closure* of an H-field K is a minimal Liouville closed H-field extension of K.

Theorem

Each H-field has exactly one or exactly two Liouville closures.

Whether we have one or two Liouville closures is controlled by a key trichotomy in the class of H-fields. We discuss this in the next slide.
Trichotomy for H-fields

A key feature of any H-field K is its valuation v whose valuation ring is the convex hull \mathcal{O} of C. Let Γ be the value group of v and $\Gamma^* := \Gamma \setminus \{0\}$. The derivation of K induces a function

$$\gamma = v(a) \mapsto \gamma' = v(a') : \Gamma^* \to \Gamma$$

and we put $\Gamma^\dagger := \{\gamma' - \gamma : \gamma \in \Gamma^*\}$. Then $\Gamma^\dagger < (\Gamma^{>0})'$, and exactly one of the following holds:

1. $\Gamma^\dagger < \gamma < (\Gamma^{>0})'$ for some (necessarily unique) γ;
2. Γ^\dagger has a largest element;
3. $\sup \Gamma^\dagger$ does not exist.

If $K = C$ we are in case 1, $\mathbb{R}((x^{-1}))$ falls under case 2, and Liouville closed H-fields under case 3. In case 1 there are two Liouville closures of K, and in case 2 there is only one.
Immediate Extensions of H-fields

For a long time we couldn’t prove that every H-field has a case 1 extension. We only knew it for *maximally valued* H-fields in case 3. But two years ago we showed:

Theorem
Every real closed H-field falling under case 3 has an immediate H-field extension that is maximally valued.

Complication: such an extension is not in general unique.

Corollary
Each H-field has a case 1 extension (and thus a case 2 extension).
Consequences for existentially closed H-fields

Using the theorem on the previous slides, many known results about \mathbb{T} can now be shown to go through for existentially closed H-fields. For example, maximally valued H-fields are differentially henselian, and it follows that existentially closed H-fields are also differentially henselian. The definition of “differentially henselian” is not so obvious, and involves linear differential operators.

A linear differential operator over a differential field K is an operator $a_0 + a_1 D + \cdots + a_n D^n$ on K, where all $a_i \in K$, and D stands for the derivation operator. They form a ring under composition, with $Da = aD + a'$ for $a \in K$.
Linear differential operators

Let K be an H-field and $A = a_0 + a_1 D + \cdots + a_n D^n$ a linear differential operator over K, $n \geq 1$, $a_n \neq 0$.

$$v(A) := \min_i va_i.$$

Theorem
The operator A induces an increasing bijection $A_v : \Gamma \rightarrow \Gamma$ given by $A_v(va) = v(Aa)$, $a \in K^\times$.

Theorem
If K is existentially closed, then $A : K \rightarrow K$ is surjective, and A is a product (composition) of operators $a + bD$ of order 1 and operators $a + bD + cD^2$ of order 2.

Both theorems were previously known for $K = \mathbb{T}$.
Definition of differentially henselian

An H-field K is **differentially henselian** if it has the following property: Let $P(Y) \in \mathcal{O}\{Y\}$ and $a \in \mathcal{O}$, so

$$P(a+Y) = P(a)+a_0 Y + a_1 Y' + \cdots + a_n Y^{(n)} + \text{terms of degree } \geq 2,$$

and suppose that $P(a) \neq 0$, $P(a) \in m(\mathcal{O})$, and $\min \nu a_i = 0$. Let $A := a_0 + a_1 D + \cdots + a_n D^n$, and take the unique γ such that $A \nu(\gamma) = \nu(P(a))$. Then there is $b \in \mathcal{O}$ such that $P(b) = 0$ and $\nu(a - b) = \gamma + \delta$, with $m\delta < \nu(P(a))$ for all m.
Set \(a^\dagger := \frac{a'}{a} \), the logarithmic derivative of \(a \).

In \(T \) we consider the sequence \((\ell_n) \) with

\[
\ell_0 = x, \quad \ell_{n+1} = \log \ell_n.
\]

This sequence is coinitial in \(T^{>\mathbb{R}} \), and

\[
-\ell_n^{\dagger\dagger} = \frac{1}{\ell_0} + \frac{1}{\ell_0 \ell_1} + \cdots + \frac{1}{\ell_0 \ell_1 \cdots \ell_n}.
\]

Then \((-\ell_n^{\dagger\dagger}) \) is a pc-sequence without a pseudolimit in \(T \). (It does have a pseudolimit \(\sum_{n=0}^{\infty} \frac{1}{\ell_0 \ell_1 \cdots \ell_n} \) in an \(H \)-field extension of \(T \).)
Another important pseudocauchy sequence

Set $\varrho(b) := (b^\dagger)^2 - 2(b^\dagger)'$. Then

$$\varrho(\ell_n^\dagger) = \frac{1}{\ell_0^2} + \frac{1}{\ell_0^2 \ell_1^2} + \cdots + \frac{1}{\ell_0^2 \ell_1^2 \cdots \ell_n^2}$$

also gives a pc-sequence without pseudolimit in \mathbb{T}. These facts can be converted into elementary properties of \mathbb{T} that seem to be key to further model-theoretic analysis:

(A1) $\forall a \exists b \left[v(a - b^\dagger) \leq vb < (\Gamma^{>0})' \right]$;

(A2) $\forall a \exists b \left[v(a - \varrho(b)) \leq 2vb, \quad vb < (\Gamma^{>0})' \right]$.

A trouble-free H-field is one that is real closed, in case 3, and satisfies (A1) and (A2).
Every existentially closed H-field is trouble-free.

Theorem

Let K be a trouble-free H-field and $P \in K\{Y\}$, $P \neq 0$. Then there are $\alpha \in \Gamma$, $a \in K^>\mathbb{C}$ and $m, n \in \mathbb{N}$ such that

$$C < y < a \iff v(P(y)) = \alpha + mvy + nvy'$$

for all y in all H-field extensions of K.

Conjecture: if K is a trouble-free H-field, then it has a unique maximal immediate trouble-free H-field extension.