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Four kinds of functions on sequences of finite length

Let U be any nonempty set. It shall serve as base set or also as alphabet. For any n, 0 ≤ n < ω, nU shall

be the set of sequences (words) x=〈x0, . . . , xn−1〉 of length n such that every xm is an element (letter) of U .

Thus, in particular, the null sequence (null word) ∅ is the only element of 0U . For any m, 0 ≤ m < ω, [m,ω)U

will be the set
⋃
{nU : m ≤ n < ω}. Thus, in particular, [0,ω)U will be the set of all sequences (words) of

finite length whose elements (letters) are in U . Concatenation of sequences (words) x and x′ in [0,ω)U will

be denoted by x
_

x′.

Consider any i, 0≤ i<ω. Excision at place i, or i-excision, shall be the (unary) function fi such that

Dofi = [i+1,ω)U and, for any x in nU ⊆ Dofi,

fi(〈x0, . . . , xi−1〉
_

〈xi〉
_

〈xi+1, . . . , xn−1〉) = 〈x0, . . . , xi−1〉
_

〈xi+1, . . . , xn−1〉 .

For example, if x=〈b, e, a, r〉=bear, then f0(x)=ear, f1(x)=bar, f2(f3(x))=f2(f2(x))=be, and x is not in

Dof4. Let (i, i+1)-interchange be the function gi such that Dogi = [i+2,ω)U and, for any x in nU ⊆ Dogi,

gi(〈x0, . . . , xi−1〉
_

〈xi, xi+1〉
_

〈xi+2, . . . , xn−1〉) = 〈x0, . . . , xi−1〉
_

〈xi+1, xi〉
_

〈xi+2, . . . , xn−1〉 .

For example, if x= bear, then g2(g1(bear)) = bare. The function g=i = {〈x, gi(x)〉 : gi(x) = x} shall be the

restriction of gi to its set of fixed points. For example, if x= beer, then g=1 (x) = x= beer, whereas

neither g=0 nor g=2 is defined for x. Note that {g=i (x) : x ∈ [0,ω)U} = {〈x0, . . . , xn−1〉 ∈ [i+2,ω)U : xi = xi+1}.
As usual, for binary relations R and S, let R^ = {〈y, x〉 : 〈x, y〉 ∈ R} and R ◦ S = {〈x, z〉 : 〈x, y〉 ∈
R and 〈y, z〉 ∈ S for some y}. Thus 〈x, x′〉 is in fi ◦ f

^

i if and only if for some n, i < n < ω, x and x′ both

are in nU , and xj = x′j if j 6= i. I let i-fusion be the binary function hi such that Dohi = fi ◦ f
^

i and, for

any 〈x, x′〉 in Dohi,

hi(x, x
′) = 〈x0, . . . , xi−1〉

_

〈xi, x′i〉
_

〈xi+1, . . . , xn−1〉 .

For example, if x= bet and x′= bat, then h1(x, x′) = beat, h1(x′, x) = baet, and h(x, x) = beet, while h0 and

h2 are not defined for 〈x, x′〉.
Among these functions, certain ones can be defined in terms of certain others. Among others there hold,

as one can verify, the following definabilities.
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Theorem 1 For any set U 6= ∅ and any i, 0≤ i <ω, let f = fi, f
′= fi+1, f ′′= fi+2, g= gi, g

= = g=i , and

h=hi. Then there hold the following equalities.

D1. g = (f ◦ f ′^) ∩ (f ′ ◦ f^

).

D2. f ′ = g ◦ f .

D3. g= = g ∩ (g ◦ g).

D4. h = {〈x, x′, w〉 : f(x)=f(x′), f(w)=x, f ′(w)=x′}.

D5. f ′′ = (f ◦ f ′ ◦ f^

) ∩ (f ′ ◦ f ′ ◦ f ′^). �

From Theorem 1 there follows that, for any U 6= ∅, each of the functions fi+2, gi, g
=
i , hi, 0 ≤ i < ω, on

[0,ω)U , is definable from {f0, f1}. Also, for example, each of the functions fi+1, g
=
i , hi, 0≤ i<ω, is definable

from f0 and {gi : 0≤ i<ω}.

Some properties of excision

Let f and f ′ be any unary functions, i.e., binary relations that are single-valued. Then f ′ shall be an

affiliate of f , and also 〈f, f ′〉 shall satisfy condition A, if and only if

(i) Dof ′ = Do(f ◦ f) and

(ii) f(f ′(x)) = f(f(x)) for any x in Dof ′.

Condition (ii) is equivalent to the condition that, for any x in Dof ′, f ′(x) is in {y : f(y) = f(f(x))}. Thus,

roughly speaking, if f ′ is an affiliate of f , then f ′ stays close to f .

A pair 〈f, f ′〉 shall satisfy condition S if and only if f ◦ f^ ⊆ f
^ ◦ f ′. Note that this condition is

equivalent to f ◦f^ ⊆ f ′^ ◦f . Also S is equivalent to the condition that f ′ is in the following sense, locally

surjective with respect to f : For any x in Dof , if f ′x is the restriction of f ′ to {w : f(w) =x}, then f ′x
is a surjection from {w : f(w)=x} to {x′ : f(x′)=f(x)}. This has the following consequence: For any x in

Dof , ‖{w : f(w)=x}‖ ≥ ‖{x′ : f(x′)=f(x)}‖.
Any pair {f, f ′} of functions, and also any ordered pair 〈f, f ′〉, shall be injective if and only if the

following condition, stated in two ways, is satisfied.

I. If f(w)=f(x) and f ′(w)=f ′(x), then w=x.

I. (f ◦ f^

) ∩ (f ′ ◦ f ′^) ⊆ {〈x, x〉 : x ∈ Dof ∩Dof ′}.

(Evidently, the condition that results when ⊆ is replaced by = is equivalent.) A consequence of I is the

following: For any x in Dof , ‖{w : f(w)=x}‖ ≤ ‖{x′ : f(x′)=f(x)}‖.
Instead of saying that f ′ is an affiliate of f such that 〈f, f ′〉 satisfies S, I, or S and I, respectively, I shall

also say that f ′ is an S-affiliate, I-affiliate, or {S, I}-affiliate of f , respectively. The following is worth

noting: If f has an {S, I}-affiliate, then for any x in Dof , ‖{w : f(w)=x}‖ = ‖{x′ : f(x′)=f(x)}‖. (Thus if

f has an {S, I}-affiliate, then the directed graph picturing f has the following property: For any x in Dof ,

x and f(x) have the same, in-degree.)

Of the following two conditions on a function f , the second is non-elementary.
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R. z is in Rg f ∩ −Dof .
T. For every x in Rg f there is some n, 0 ≤ n < ω, necessarily unique,

such that fn(x) = z.

Any z satisfying R shall be a root of f . If there is some z such that R holds, then f shall be rooted. If both R

and T hold, then the mono-unary partial algebra 〈Rg f, f, z〉 shall be a rooted tree. In that case, z is the only

element of Rg f∩−Dof . Also, if for any n, 0≤n<ω, one lets Vn = {x : fm(x) = z for some m, 0 ≤ m ≤ n}.
then Rg f =

⋃
{Vn : 0 ≤ n < ω}. Moreover, by condition R, V0 6= ∅ and V1 ∩ −V0 6= ∅.

For any cardinal κ, a function f shall be κ-regular if and only if Dof ⊆ Rg f and, for any y in Rg f ,

‖{x : f(x) = y}‖ = κ. If f is κ-regular for some κ ≥ 1, then f shall be regular. There follows that

if 〈Rf f, f, z〉 is a rooted tree and f ′ is an {S, I} affiliate of f , then f is regular and hence is κ-regular,

where κ = ‖{y : f(y) = z}‖. Moreover, as can be shown, in this case f ′ also is κ-regular. In fact,

it is a κ-regular “forest”, which consists of κ pairwise disjoint κ-regular trees, each of whose roots is in

{y : f(y) = z} = V1 ∩ −V0.

One can readily verify the following.

Lemma 1 Let U be any nonempty set and, for any i, 0≤ i<ω, let fi be i-excision.

(a) For any i, 0≤ i<ω, fi+1 is an {S, I} affiliate of fi.

(b) Every fi is ‖U‖-regular.

(c) 〈[0,ω)U, f0, ∅〉 is a rooted tree. �

Axiomatization and representation

Lemma 1(a), for the case i=0, and Lemma 1(c) together yield a condition that is necessary for a bi-unary

partial algebra (with a distinguished element) to be isomorphic] to an algebra 〈[0,ω)U, f0, f1, ∅〉. According

to the following theorem, the condition also is sufficient.

Theorem 2 Consider any bi-unary partial algebra V = {Rg f, f, f ′, z〉 such that 〈Rg f, f, z〉 is a rooted tree

and f ′ is an {S, I} affiliate of f . Let U={y : f(y) = z} and let φ be the bijection from U to 1U such that for

any y in U , φ(y)=〈y〉. Then φ can be extended (in a unique way) to an isomorphism from 〈Rg f, f, f ′, z〉 to

〈[0,ω)U, f0, f1, ∅〉.

Proof. For any n, 0 ≤ n < ω, let Vn = {v ∈ V : fm(v) = z for some m, 0 ≤ m ≤ n} and let

Wn =
⋃
{mU : 0 ≤ m ≤ n}. Also, for any n, 0≤n<ω, let Vn = 〈Vn, f, f ′, z〉 and Wn = 〈Wn, f0, f1, ∅〉 be

the subalgebra of 〈V, f, f ′, z〉 or of 〈[0,ω)U, f0, f1, ∅〉, respectively, whose universe is Vn or Wn, respectively.

Then φ1 = φ ∪ {〈z, ∅〉} is an isomorphism from V1 to W1. For 1 ≤ n < ω, assume as inductive hypothesis

that φn is an isomorphism from Vn to Wn which includes φ1. To extend φn to an isomorphism from Vn+1 to

Wn+1, consider any v in Vn+1∩−Vn and let x = f(v) and x′ = f ′(v), so that φn(x) and φn(x′) are an element

〈u0, . . . , un−1〉 or 〈u′0, . . . , u′n−1〉, respectively, of nU . Since f ′ is an affiliate of f , therefore f(x) = f(x′).
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Since φn is an isomorphism, therefore f0(〈u0, . . . un−1〉) = f0(φn(x)) = φn(f(x′)) = f0(〈u′0, . . . , u′n−1〉).
Hence um = u′m for any m 6= 0. Let

φn+1(v) = 〈u′0, u0〉
_

〈u1, . . . , un−1〉 = 〈u′0, u0〉
_

〈u′1, . . . , u′n−1〉 .

There follows

f0(φn+1(v)) = 〈u0, u1, . . . , un−1〉 = φn(x) = φn(f(v)) .

f1(φn+1(v)) = 〈u′0, u′1, . . . , u′n−1〉 = φn(x′) = φn(f ′(v)) .

Let φn+1 be the function whose domain is Vn+1 such that, if v is in Vn, then φn+1(v) = φn(v) and, if v is in

Vn+1 ∩ −Vn, then φn+1(v) is the element of n+1U that is shown above. Now consider any v in Vn+1 ∩ −Vn.

Since f(v) and f ′(v) are in Vn, therefore φn(f(v)) = φn+1(f(v)) and φn(f ′(v)) = φn+1(f ′(v)). From these

two equalities and the two displayed above, there now follows that φn+1 is a homomorphism from Vn+1 to

Wn+1.

To see that φn+1 is surjective, consider any sequence 〈u′, u〉_〈u1, . . . , un−1〉 in n+1U . Then for a unique x′

and x in Vn, 〈u′〉_〈u1, . . . , un−1〉 = φn(x′) and 〈u〉_〈u1, . . . , un−1〉 = φn(x). Since f0(〈u′〉_〈u1, . . . , un−1〉) =

f0(〈u〉_〈u1, . . . , un−1〉) and since φ is an isomorphism from Vn to Wn therefore f(x′)) = f(x). Since

〈f, f ′〉 satisfies S, therefore there is some v in Vn+1 such that f(v) = x′ and f ′(v) = x. Then φn+1(v) =

〈u′, u〉_〈u1, . . . un−1〉. There follows that φn+1 is a surjection from Vn+1 to Wn+1. Finally, since {f, f ′} is

an injective pair, therefore φn+1 is injective. There now follows that
⋃
{φn : 0 ≤ n < ω} is an isomorphism

from V to W. �

A consequence of Theorem 2 is the following. Algebras V and V′ satisfying the conditions of the theorem

are isomorphic if and only if ‖V ∩ −{z}‖ = ‖V ′ ∩ −{z′}‖. From the proof of the theorem one can also see

that any bijection from V1 ∩ −{z} to V1 ∩ −{z} can be extended to an automorphism of V and that these

are the only automorphisms of V.

Definitional expansion. Excision algebras

Consider any algebra V = 〈[0,ω)U, f0, f1, ∅〉 where U is any nonempty set. Its expansion

V1 = 〈[0,ω)U, f0, f1, g0, g
=
0 , h0, ∅〉 shall be a definitional expansion of V, since by Theorem 1 there

holds for it D1,D3, and D4. The expansion V2 = 〈[0,ω)U, f0, f1, f2, g0, g1, g
=
0 , g

=
1 , h0, h1, ∅〉 of V1, in

turn can be obtained from V2 by first using D5 and then D1,D3 and D4. From V 2 in turn by thus

using D5, D1, D3, D4 altogether ω times one obtains the algebra V3 = 〈[0,ω)U, fi, gi, g
=
i , hi, ∅〉i<ω. It

shall be a {D1,D3,D4,D5} expansion of V, and also of V1 and of V2. Now consider any alge-

bra V′ = 〈Rg f ′0, f ′0, f ′1, z〉 which is isomorphic to V = 〈[0,ω)U, f0, f1, ∅〉. From Theorem 1 there fol-

lows that it has a {D1,D3,D4,D5} expansion V′′ = 〈Rg f ′0, f ′i , g′i, g
′=
i , h′i, z〉i<ω which is isomorphic to

V3 = 〈[0,ω)U, fi, gi, g
=
i , hi, ∅〉i<ω.

An excision algebra shall be any algebra V such that some definitional expansion of V is, for some

U 6= ∅, isomorphic to 〈[0,ω)U, fi, gi, g
=
i , hi, ∅〉i<ω. If, for some U 6= ∅, the universe of V is the set [0,ω)U ,

then V shall be based on U . Thus, among others, each of the above algebras V, V1, V2, V3 is an excision

algebra based on the same set U . Also, for example, by Theorems 1 and 2, the above algebras V′ and V′′
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are an excision algebra. The theories of each of these six algebras are definitionally equivalent in the

sense that by suitable uses of D1,D3,D4,D5 each can be extended to a theory whose set of theorems is

the same as the set of theorems of the theory of V3, which is also that of the theory of V2.

Different ones among these theories have different advantages and disadvantages. An obvious advantage

of the theory of an algebra such as V′ = 〈Rg f, f, f ′, z〉 is that it involves only two functions, each of which,

moreover, is unary, and only five axioms which somehow seem quite natural by themselves as well as in

conjunction with one or more of the others. These five axioms also are fairly easy to visualize, by using,

along with dots, arrows of two kinds or colors. The D5 expansion 〈Rg f ′0, f ′i , z〉i<ω of 〈Rg f ′0, f ′1, z〉 brings

out the similarity of the algebras 〈Rg f ′i , f ′i , f ′i+1〉 and 〈Rg f ′j , f ′j , f ′j+1〉, i 6= j, and also how they are related.

However D5 may turn out to be less tractable than D1,D2,D3, or D4.

Use of D5 can be avoided by use of {f0}∪{gi : i < ω} as a set of primitive functions and repeated use of

D2. As one can see, the closure Sp of {gi : i < ω} under ◦ and ^ forms an inverse semigroup Sp = 〈Sp, ◦,^〉
which is closely related to the group 〈G, ◦,^〉, where G is the closure under ◦ of the set {(i, i+1) : 0 < i < ω}
of transpositions on ω = {n : 0 ≤ n < ω}. A presentation of Sp is given on pp.157–163 of [C 06]. It could be

used as part of a theory of the algebras 〈[0,ω)U, f0, gi, g
=
0 , h0, z〉i<ω.

According to the following lemma the need for using as axiom the condition that {f, f ′} or {f0, g0 ◦f0} is

an injective pair (i.e., satisfies condition I) can be avoided when dealing, for example, with excision algebras

V of the kind that is shown there.

Lemma 2 Consider any algebra V = 〈Rg f, f, f ′, h, z〉 such that f ′ is an S-affiliate of f , 〈Rg f, f, z〉 is a

rooted tree, and h is the function defined from f and f ′ by D4. For any n, 0 ≤ n < ω, let Vn = {v ∈ V :

fm(v) = z for some m, 0≤m≤n}. Then the following set of conditions implies that {f, f ′} is an injective

pair: {Vn+1 ∩ −Vn} ⊆ {hn(x, x′) : {x, x′} ⊆ Vn ∩ −Vn−1} if 1 ≤ n < ω. �

(Note that, since f ′ is an S-affiliate of f , ⊆ may be replaced by = .)

Another important way in which the function h0 complements the functions f0 and f1 is brought out by

the following lemma.

Lemma 3 For any U 6= ∅, let V be the excision algebra 〈[0,ω)U, f0, f1, h0, ∅〉 and let Y be any nonempty sub-

set of [0,ω)U ∩ −0U . Let X be the subalgebra of 〈[0,ω)U, f, g, ∅〉 that is generated by Y , let

W1 = X ∩ (0U ∪ 1U), and let W be the closure of W1 under h0. Then W is the universe of the subal-

gebra of V that is generated by Y . �

A consequence of Lemma 3 is the following: There is a one-one correspondence between the subalgebras

of V and the nonempty subsets of 1U .

Operations on sets of sequences of finite length

For any set V 6= ∅ and any binary relation f on V , f∗ shall be the (unary) operation (i.e., total function)

on the power set {W : W ⊆ V } of V such that, for any W ⊆ V , f∗(W ) = {y : 〈x, y〉 ∈ f, for some x ∈W}.
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Thus, f^∗= (f^)∗ is the operation on {W : W ⊆ V } such that f^∗(W ) = {x : 〈x, y〉 ∈ f, for some y ∈W}.
Thus, f∗(W ) is the direct image of W under f and f^∗(W ) is the inverse image of W under f . In [JT], the

operations f∗ and f^∗ are called conjugates of each other. For any v in V , v∗ shall be {v}.
Thus, if V = [0,ω)U for some U 6= ∅ then, for any W ⊆ [0,ω)U , W ′ ⊆ [0,ω)U , and i, 0≤ i<ω, there hold:

fi
^∗(W ) = {x_〈u〉_y : x ∈ iU, u∈U, x_y ∈W} .
f∗i (W ) = {x_y : x ∈ iU, x_〈u〉_y ∈W for some u ∈ U} .
g∗i (W ) = {x_〈u, u′〉_y : x ∈ i−1U, {u, u′} ⊆ U, x_〈u′, u〉_y ∈W 〉 .

(g=i )∗(W ) = W ∩ {x ∈ [i+2,ω)U : xi = xi+1} .
h∗i (W,W ′) = fi

^∗(W ) ∩ fi+1
^∗(W ′)

= {x_〈u, u′〉_y : x ∈ i−1U, {u, u′} ⊆ U, x_〈u〉_y ∈W, x_〈u′〉_y ∈W ′} .
∅∗ = {∅} = 0U .

For example, for any u 6= ∅ and any W ⊆ 2U ,

f∗0 (W ) = {〈u′〉 : 〈u, u′〉 ∈W, for some u ∈ U} ,
f∗1 (W ) = {〈u′〉 : 〈u′, u〉 ∈W, for some u ∈ U} .

Thus, if one “identifies” 〈u′〉 and u′, then for any W ⊆ 2U , f∗0 (W ) and f∗1 (W ) are the range or domain,

respectively, of W .

Now assume for example, that U is the set R of real numbers and that W is a circle in the plane R2.

Then f2
^∗(W ) is the cylinder W × U = {〈u0, u1, u〉 : u ∈ R, 〈u0, u1〉 ∈ W} that is obtained by drawing

an infinite vertical line through every 〈u0, u1〉 in W , while f1
^∗(W ) = {〈u0, u, u1〉 : u ∈ R, 〈u0, u1〉 ∈ W}

and f0
^∗(W ) = {〈u, u0, u1〉 : u ∈ R, 〈u0, u1〉 ∈ W}. (For similarities and dissimilarities see Figure 1.1.7 in

[HMT].)

Again letting U = R, consider any subset W of 2U = R2. Then g∗0(W ) = {〈u, u′〉 : 〈u′, u〉 ∈ W}. Thus

g∗0(W ) results from W by reflection with respect to the line g=∗0 (2R) = {〈u, u〉 : u ∈ R}.
For the binary operations h∗0, h

∗
0, h
∗
1, respectively, there hold, for example:

h∗0(W,W ′) = {〈u, u′〉 : u ∈W, u′ ∈W}, if {W,W} ⊆ 1U ,

h∗0(W,W ′) = {〈u0, u′0, u1〉 : 〈u0, u1〉 ∈W, 〈u′0, u1〉 ∈W ′}, if {W,W ′} ⊆ 2U ,

h∗1(W,W ′) = {〈u0, u1, u′1, u2〉 : 〈u0, u1, u2〉 ∈W, 〈u0, u′1, u2〉 ∈W ′}, if {W,W ′} ⊆ 3U .

For the element ∅∗ = {∅} = 0U of {W : W ⊆ [0,ωU} there holds, for any n, 0≤n<ω,

|(fn0 )^∗(∅∗) = (fn0 )^∗(0U)| = nU .

These examples illustrate that the operations f∗i , fi
^∗, g∗i , g

=∗
i , h∗i , ∅∗ are widely used in mathematical

practice and also often in common reasoning.

The following theorem shows that the above set of operations, or any subset of them from which the rest

of them is definable, together with the Boolean operations ∩ , ∪ , −2 , where −2 is relative complementation, has

adequate expressive power with respect to first-order logic (with equality). It is close to being folklore.

There is some discussion of it on pp.9–17 of [C 06].
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Theorem 3 Let 〈U,Wk′〉k′<k be any structure such that U 6= ∅ and for every k′, 0 < k′ < k, there is

some rk′ , 1 ≤ rk′ < ω, such that Wk′ ⊆ rk′U . Consider any subset W ′ of mU , where 1 ≤ m < ω.

Then W ′ can be defined in 〈U,Wk′〉k′<k by a formula of first-order logic with equality (but without function

symbols or individual constants) if and only if W ′ is in the closure of {Wk′ : k′ < k} under {∪ ,∩ , −2} and

{f∗0 , f0^∗, g=∗0 , {∅}, g∗i }i<ω. �

A central role in the theory of cylindric set algebras is played by the operations of i-cylindrification,

0≤ i<ω, which operate on the class {W : W ⊆ ωU}, where ωU is the set of sequences x = 〈xi : 0≤ i<ω〉
of length ω such that every xi is in U . (Cf.[HMT].) For any i, 0≤ i<ω, let bi be the following equivalence

relation on [0,ω)U :

bi =
⋃
n≤i

{〈x, x〉 : x ∈ nU} ∪ (fi ◦ f^i ) .

Then for any i, 0 ≤ i < ω, an analogue of i-cylindrification on {W : W ⊆ ωU} is the operation b∗i on

{W : W ⊆ [0,ω)U}. For any W ⊆ [0,ω)U , it satisfies the equality D7 in Theorem 4 below.

One can verify that for any U 6= ∅ there hold among the operations on {W : W ⊆ ωU} the following

definabilities.

Theorem 4 For any U 6= ∅, {W,W ′} ⊆ U and i, 0≤ i<ω, there hold the following equalities.

D2*. f∗i+1(W ) = f∗i (g∗i (W )).

D3*. g=∗i (W ) = g∗i (W ) ∩ g∗i (g∗i (W )).

D4*. h∗i (W,W ′) = fi
^∗(W ) ∩ f^∗

i+1(W ′).

D6*. iU = f i
^∗

0 (0U) = f i
^∗

0 (∅∗).

D7*. b∗i (W ) = (W ∩
⋃
j≤i

jU) ∪ f
^∗
i (f∗i (W )).

For example, to verify D4*, consider any subsets W and W ′ of [0,ω)U and any sequence w′′ in [0,ω)U . Then

w′′ is in h∗i (W,W ′) if and only if for some w in W and some w′ in W ′ there hold the following three equalities:

fi(w
′′) = w, fi+1(w′′) = w′, and fi(w) = fi(w

′). Since fi+1 is an affiliate of fi, therefore fi(w
′′) = w and

fi+1(w′′) = w′ together imply that fi(w) = fi(w
′). Hence the third equality above can be omitted. �
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Set algebras. Some steps toward axiomatization.

For any set U 6= ∅, a set algebra based on U shall be any algebra V which is a subalgebra of an algebra

V′ whose universe is {W : W ⊆ [0,ω)U} such that, if − is unary complementation, then the algebra

V′′ = 〈{W : W ⊆ [0,ω)U},∩,∪,−, f∗i , f
^∗
i , g∗i , g

=∗
i , h∗i ,

iU, b∗i 〉i<ω

is a {D2*,D3*,D4*,D6*,D7*} expansion of V′. Thus, for example, for any set U 6= ∅, any subalgebra V

of the algebra

V′′′ = 〈{W : W ⊆ [0,ω)U},∩,∪,−, f∗0 , f
^∗
0 , g∗i , g

=∗
0 , h∗0,

0U, b∗0〉i<ω

is a set algebra based on U since the above algebra V′′ is a {D2*,D3*,D4*,D6*,D7*} expansion of V′′′.

Also, for example, so is any subalgebra of a D2* expansion or of a {D2*,D3*,D6*} expansion of V′′′. A

set algebra shall be any algebra which, for some set U 6= ∅, is a set algebra based on U . (It shall be a full

set algebra if and only if its universe is the set {W : W ⊆ [0,ω)U}. Thus the above algebras V′, V′′, and V′′′

are full set algebras.) Thus, to different choices of operations serving as primitives there correspond different

classes of set algebras. Given any class among these there arises the problem of axiomatizing the class of all

isomorphic images of members of this class.

(By Theorem 3, unary complementation − is not needed for expressive adequacy; relative complementa-

tion −2 is sufficient. Hence, if one replaces − by −2 in the above definition of set algebra, one obtains a class

of algebras for which questions of axiomatization also are of interest. There is some discussion of this topic

in chapter I of [C 06], but it will not be pursued here any further.)

Among aspects relevant to axiomatization, some facts about the operations f∗i and f
^∗
i will be considered

first.

Lemma 4 Let V be any set, let f and f ′ be any partial functions on V , and let f∗, f
^∗, f

′∗, f
′^∗ be the

operation on {W : W ⊆ V } which, for any W ⊆ V forms the direct image of W under f, f^, f ′, f
′^

respectively.

(a) Assume that f ′ is an affiliate of f . Then:

A*. f
′∗(V ) = (f2)∗(V ) and f∗(f

′∗(W )) = f∗(f∗(W )) for any W ⊆ V .

(b) Assume that 〈f, f ′〉 satisfies f ◦ f^ ⊆ f^ ◦ f ′. Then:

S*. f∗ ◦ f^∗ ⊆ f^∗ ◦ f ′∗.
(c) Assume that Rg f ∩ −Dof = {z}. Then:

R*. z∗ = {z} = f∗(V ) ∩ −f^∗(V ).

(d) Assume that 〈V, f, z〉 is a rooted tree. Then:

T*. V =
⋃
{(fn)

^∗({z}) : 0 ≤ n < ω}. �

(For each of the functions fi, gi, g
=
i , hi on [0,ω)U , there is an analogous function on ωU . Likewise, for

each of the operations f∗i , f
^∗
i , g∗i , g

=∗
i , h∗i on {W : W ⊆ [0,ω)U}, there is an analogous operation on

{W : W ⊆ ωU}. These functions on ωU and these operations on {W : W ⊆ ωU} share many of the
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formal properties of their analogues. In particular, for them there hold analogues of D1,D2,D3,D4 or of

D1*,D3*,D4*, respectively. Furthermore there hold analogues of A, S, I, or of A* and S* respectively.

Furthermore, instead of considering [0,ω)U and {W : W ⊆ [0,ω)U}, one may wish to consider for any n,

1 ≤ n < ω, the sets 0U ∪ · · · ∪ nU and {W : W ⊆ 0U ∪ · · · ∪ nU} and algebras pertaining to these. For these

there also hold many analogues. These two topics also will not be pursued further.)

It is doubtful that for I there is a condition that is related to it as A*,S*,R*,T* are related to A,S,R,T

respectively. However, in view of Lemma 2, there is hope that, together with using T* and D6*, one can

use D4* and the following axiom scheme.

H∗0 For any i, 1 ≤ i < ω and any W ⊆ i+1U , there are
W ′ ⊆ iU and W ′′ ⊆ iU such that W = h∗0(W ′,W ′′).

Among the various classes of set algebras that one may wish to axiomatize, I seem to favor, for no very

clear reason, the class of algebras whose set of extra-Boolean primitives is the set

{g∗i }i<ω ∪ {f∗0 , f
^∗
0 , f∗1 , f

^∗
1 , g=∗0 , 0U} .

Then, in axiomatizing the class of isomorphic images of algebras 〈{W : W ⊆ [0,ω)U}, g∗i 〉i<ω one would want

to bring out the fact that every gi is a bijection from [i+2,ω)U to [i+2,ω)U such that, moreover, g∗i (nU) = nU

for every n, i+2 ≤ n < ω. One also would want to make use of some presentation of the inverse semigroup

Sp which was mentioned earlier, since (gi ◦ gj)∗ = g∗i ◦ g∗j , if 0 ≤ i ≤ j < ω. Furthermore, one would try

to bring out how g=∗0 and g∗0 or,, more generally, g=∗i and g∗i , are related. The importance of this topic was

brought out to me in conversations with Richard Thompson.

There is a sense in which a full set algebra with universe {W : W ⊆ [0,ω)U} reflects the structure of

the algebra whose universe is [0,ω)U from which it has been obtained. For some choices of primitives this

may come out more clearly than for some others. In a change from a full set algebra to its subalgebras

some of this information is lost. My hope is that by proceeding in ways illustrated above one will eventually

obtain axiomatizations that reflect as closely as possible the structure of the unary algebra of the underlying

functions.

Relationship to augmented cylindric set algebras

For any set U 6= ∅, an augmented cylindric set algebra based on U shall be any algebra

V = 〈V,∩,∪,−, f∗0 , f
^∗
0 , g=∗i , iU, b∗i 〉i<ω

which is a subalgebra of the algebra V′ whose universe V ′ is the set {W : W ⊆ [0,ω)U}. Any algebra V

which, for some U 6= ∅, is an augmented cylindric set algebra based on U shall be an augmented cylindric

set algebra.

Augmented cylindric set algebras are one of the two main topics of chapter 6 of [C 74]. The notion was

suggested to me by the use of neat embeddings in the theory of ω-dimensional cylindric algebras (cf [HMT],

9



400ff). An analogue of the operation f
^∗
0 or f∗0 , respectively, on {W : W ⊆ [0,ω)U} is the operation Q or P ,

respectively, on {W : W ⊆ ωU} which satisfies, for any W ⊆ ωU , the following condition respectively:

Q(W ) = {〈u〉_y : u ∈ U, y ∈W} .
P (W ) = {y : 〈u〉_y ∈W for some u ∈ U} .

In [HMT], Q serves as an operation which neatly embeds certain ω-dimensional cylindric algebras in others.

In order to utilize certain properties of neat embeddings, it seemed natural, as was done in chapter 6 of

[C 74], to make use of the analogues f∗0 and f
^∗
0 of Q or P , respectively, in constructing algebras whose

universe is a subset of {W : W ⊆ [0,ω)U}. (Earlier in [B], Bernays used analogues of Q and P in a rather

similar way.)

A generalization of the functions g=i on a set [0,ω)U of sequences (words) of finite lengths are the following

functions g=i,j where 0 ≤ i < j < ω:

g=i,j = {〈x, x〉 : x ∈ [j+1,ω)U, xi =xj} .

In Theorem 5(a) below, certain definabilities are given among functions on [0,ω)U . The corresponding

definabilities among the corresponding operations on {W : W ⊆ [0,ω)U}, which follow from them, are given

in Theorem 5(b). A related theorem is Theorem 6 on pp.22–23 of [C 06]. A proof of D9 occurs as part of a

proof of Theorem 1(a), pp.9–10 of [C 06].

Theorem 5 (a) For any set U 6= ∅, any i, 0≤ i<ω, and any fi, fi+1, fi+2, fi
^, g=i , g

=
i+2, bi+1 there hold

the following definabilities

D8. g=i,i+2 = g=i ◦ fi^.

D9. gi = fi
^ ◦ g=i,i+2 ◦ fi+2.

D10. fi+1 = bi+1 ◦ g=i ◦ fi.

(b) For any set U 6= ∅, any i, 0 ≤ i < ω, and any f∗i , f
∗
i+1, f

∗
i+2, f

^∗
i , g=∗i , g=∗i,i+2, b

∗
i+1, there hold the

following definabilities.

D8*. g=∗i,i+2 = g=∗i ◦ f
^∗
i .

D9*. g∗i = f
^∗
i ◦ g=∗i,i+2 ◦ f∗i+2.

D10*. f∗i+1 = b∗i+1 ◦ g=∗i ◦ f∗i .

To verify D10 consider any v = 〈x0, . . . , xi−1〉_〈xi, xi+1〉_y in Do bi+1 = [i+2,ω)U . Then

b∗i+1({v}) = {〈x0, . . . , xi−1〉_〈xi, u〉_y : u ∈ U}, hence g=∗i (b∗i+1({v})) = {〈x0, . . . , xi−1〉_〈xi, xi〉_y},
and hence f∗i (g=∗i (b∗i+1({v}))) = {〈x0, . . . , xi−1〉_〈xi〉_y} = f∗i+1({v}). �

For any set U 6= ∅, consider any augmented cylindric set algebra V′ based on U . Since f∗0 , f
^∗
0 , and

every g=∗i and b∗i are among the primitive functions of V, there follows by induction that every f∗i , f
^∗
i can

10



be defined using D10*. Since every g=i is among the primitive functions of V one can then define every

g=∗i,i+2 using D8*, and then every g∗i , using D9*. Thus, the following set algebra is a {D8*,D9*,D10*}
expansion of V:

V′ = 〈V,∩,∪,−, f∗i , f
^∗
i , g∗i , g

=∗
i , iU, b∗i 〉i<ω .

In chapter 6 of [C 74], an axiomatization is given of the class of the algebras V′′ which are the isomorphic

image of an augmented cylindric set algebra based on some set U . There follows that this axiomatization,

when supplemented by D8*,D9*,D10*, is an axiomatization of the class of algebras discussed in the pre-

ceding section. For reasons indicated there, other axiomatizations, perhaps with a different set of primitives,

corresponding to a different set of underlying functions or relations on [0,ω)U , may have advantages.

For any set of extra Boolean primitives, such as the one just described, one can construct in the usual

way an algebraic language with symbols for these primitives, symbols for the Boolean operations, and a

symbol for equality. One can then define in the usual way a relation |= such that, if s= t is an equality

between terms and E is a set of such equalities, then E |= s = t if and only if every model of E, under

the interpretation of {∩,∪,−}, {g∗i }i<ω, and {f^∗
0 , f∗0 , g

=∗
0 , h∗0,

0U} that I have been using, is also a model

of s= t. Any set E of equalities thus gives rise to a congruence relation on the set of terms and then to

an algebra in which to each of the symbols for the above operations there is assigned a function on the

resulting congruence classes of terms. (Cf. [HMT], pp.168–170.) The resulting algebra shall be an algebra

of theories. For augmented cylindric algebras, their algebras of theories were characterized in the second

half of chapter 6 of [C 74], making use of ideas in the unpublished thesis [Ho]. It is likely that methods used

there will yield characterizations of theories based on a set of primitives which differs from the one used in

[C 74], such as one of the sets of primitives mentioned in the previous section.

The set of equalities that hold in every augmented cylindric set algebra (of operations on sets of sequences

of finite length) has been axiomatized in chapter 5 of [C 74]. This allows one to treat certain problems of

provability or non-provability in first-order logic with equality as problems concerning an equational theory.

There is a fair chance that, by adapting some steps in chapters 4 and 5 of [C 74], one can find for some of

the set algebras discussed earlier, an axiomatization of the equalities that hold in these.

Addendum

Theorem 6 For any set U 6= ∅ and any i, 0≤ i<ω, there hold:

D11. gi+1 = (fi ◦ gi ◦ fi^) ∩ (f2i+1 ◦ (f2i+1)^).

D11*. g∗i+1 = (f∗i ◦ g∗i ◦ f
^∗
i ) ∩ (f2i+1)∗ ◦ (f2i+1.)

^∗.

For proof of D11* consider any W in Dog∗i+1 = {W : W ⊆ [i+3,ω)U} and any x= 〈x0, . . . , xn−1〉 in nU ,

i+3 ≤ n < ω. Then:

f
^∗
i (g∗i (f∗i ({x}))) = {〈x0, . . . , xi−1〉_〈u〉_〈xi+2xi+1〉_〈xi+3, . . . , xn−1 >: u ∈ U}

(f2i+1)∗
^

((f2i+1)∗({x})) = {〈x0, . . . , xi−1〉_〈xi〉_〈u′, u′′〉_〈xi+3, . . . , xn−1〉 : {u′, u′′} ⊆ U}
Hence

(f∗i ◦ g∗i ◦ f
^∗
i )({x}) ∩ ((f2i+1)∗ ◦ (f2i+1)∗

^

({x}) = {〈x0, . . . , xi−1〉_〈xi〉_〈xi+2, xi+1〉_〈xi+3, . . . , xn−1〉} .
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Consider any excision algebra V = 〈[0,ω)U, f0, f1〉. The algebra V′ = 〈[0,ω)U, f0, f1, g0, g1〉 is a {D1,D11}
expansion of V and the algebra V′′ = 〈[0,ω)U, f0, f1, g0, g1, f2〉 is a {D2} expansion of V′. Then the algebra

V′′′ = 〈[0,ω)U, f0, f1, f2, g0, g1, g2〉 is a D11 expansion of V′′. Thus using D2 and then D11 altogether ω times

one obtains as a {D1,D2,D11} expansion of V the excision algebra V′′′ = 〈[0,ω)U, fi, gi〉i<ω. Using D1*,

D2*, and D11* in a similar manner one obtains from any set algebra 〈{W : W ⊆ [0,ω)U}, f∗0 , f
^∗
0 , f∗1 , f

∗
1 〉

its {D1*,D2*,D11*} expansion 〈{W : W ⊆ [0,ω)U}, f∗i , f
^∗
i , g∗i 〉i<ω.
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