Harrington, - 1989 Harrington, 1989-1997 Harrington, 1997-2007 Harrington, 2007-

000000000000 00000 o 0000 00000

Definability in the
Computably Enumerable Sets
What | learned from Leo Harrington

Peter Cholak

University of Notre Dame
Department of Mathematics

Peter.Cholak.1@nd.edu
http://www.nd.edu/~cholak/papers/

http://www.nd.edu/~cholak/papers/harrington11.pdf
Supported by NSF Division of Mathematical Science

March 26, 2011


http://www.nd.edu/~cholak/papers/
http://www.nd.edu/~cholak/papers/harrington11.pdf

Harrington, - 1989
000000000000

The Computably Enumerable Sets, €

e W, is the domain of the eth Turing machine.

e ({W,:e € w},c) are the c.e. (r.e.) sets under inclusion,
€.

e These sets are the same as the Z(f sets,
{x:(N,+,%,0,1) E @(x)}, where @ is Z(l).

e W, is the domain of the eth Turing machine at stage s.

e For safety, all sets are c.e., infinite, and coinfinite, unless
otherwise noted.

e 0,1,uU, N, and U (disjoint union) are definable from < in
€.
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Computably Isomorphic Sets

Definition
X and Y are computably isomorphic iff there is a computable
permutation, p, of w such that p(X) =Y.

Lemma

Assume X and Y are computably isomorphic which is
witnessed via a computable permutation p. Then
d(W) = p(W) is an automorphism of €.

Proof.

e If Wis c.e.then sois p(W).
e XcYiff p(X) cp(Y).

The first clause depends on the fact that p is computable.
The second depends on the fact that p is a permutation. [
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1-Complete Sets

Theorem (Myhill)
X is 1-complete iff X and K are computably isomorphic.

Lemma
All 1-complete sets are in the same (effective) orbit.

Question
Do the 1-complete sets form an (effective) orbit?
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The Computable Sets

Lemma
The infinite coinfinite computable sets are in the same
effective orbit.

Proof. ~
There is a computable permutation p such that p(R) = R and
p(R) =R. O
Lemma

R is computable iff Y[R LU Y = w].

Lemma
The infinite coinfinite computable sets form an effective orbit.
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1-Complete is Definable

Theorem (Harrington ~84)
A c.e. set A is 1-complete iff

(3C > A)(VB = C)(AR)[R is computable & R N
C is noncomputable & RN A =R n B].

Theorem
The 1-complete sets form an effective orbit.
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Automorphisms vs. Definability

Definition

X is automorphicto Y, X =~ Y, iff there is an automorphism
of € such that ®(X) =Y.

If the 1-complete sets had failed to form an orbit then there
must be a c.e. set which not 1-complete but is automorphic
to a 1-complete set. The failure to find these automorphisms
led Leo to the property defining the 1-complete sets. It is this
interplay which makes the c.e. sets an interesting place to
work.
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1.1 Theorem (Harrington). An r.e. set A is creative iff

(L.1) (3C > A) (VB C C) (3R) |R is recursive
& RNC is nonrecursive & RN A= RN B,

where all variables range over €.

1.2 Corollary (Harrington). The property of being creative is elementary
lattice theoretic. [} .

1.3 Definition. (i) Let Aut & (Aut £*) denote the group of automorphisms
of £ (£*). The symbols ®, ¥ will denote automorphisms of £ or £*.

(ii) For A and B € £ we say A is automorphic to B and write A =; B
(A* =g« B*) if there exists & € Aut £ (Aut £*) such that ®(A) = B
(®(4*) = B*).

(iii) The orbit of A € &, written orbit(A), is the class { B: A =¢ B}.

(iv) The orbit of A* € £* is the class { B* : A* =¢. B*}.

1.4 Corollary (Harrington). The creative sets constitute an orbit.
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Chapter XV. Automorphisms of the Lattice of R.E. Sets
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4.6 Theorem (Soare [1974]). Given any two mazimal sets A and B there s
an automorphism & of £ such that ®(A) = B.

Proof. Fix maximal sets A and B. In Theorem 5.1 we shall define skele-
tons { Un }new and { Vi }new which depend upon A and B, respectively. In
Theorem 5.2 we shall then define u.r.e. sequences {U;} }new and (Vi Inew
satisfying (4.6) and give a simultaneous enumeration of all the above r.e. sets
which satisfies the hypotheses (4.11) and (4.12) of the Extension Theorem.
By the conclusion of the Extension Theorem and Corollary 2.9 there exists
a 1:1 map p from A to B satisfying (4.7) so A* =¢+ B*. By Corollary 2.7
A=¢B. 1
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Chapter XVI. Further Results and Open Questions
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1.14 Open Question. For every nonrecursive r.e. set A does there exist
® € Aut € such that ®(A) =r 0'?

This question appears to be rather difficult. (Some partial results were
obtained by Downey and Stob [ta, Theorems 9 and 12] which imply that every
lows simple set, every simple set A with A semi-low; 5, and every d-simple
set with a maximal superset is automorphic to a complete set.) The dual

question is whether every orbit contains some degree a < 0'. By Theorem
XV.1.1 this cannot be exactly true and indeedc]aims further
that there exists ap-arhit consisting of only Turing complete but not creative
sets. However,also claims that a revised version of the question
has a positive answer- Namely, he claims that if A is r.e., nonrecursive and
not Turing complete, then there exists a set B in the orbit of A such that

B £t A. A weaker open question than 1.14 is whether every nonrecursive
r.e. set contains some high r.e. set in its orbit.
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JOURNAL OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 9, Number 3, July 1996

THE AJ-AUTOMORPHISM METHOD
AND NONINVARIANT CLASSES OF DEGREES

LEO HARRINGTON AND ROBERT 1. SOARE

1. INTRODUCTION

A set A of nonnegative integers is computably enumerable (c.c.), also called
recursively enumerable (r.e.), if there is a computable method to list its elements.
Let € denote the structure of the computably enumerable sets under inclusion,
& = ({We}eecw, ©). Most previously known automorphisms @ of the structure £ of
sets were effective (computable) in the sense that ® has an effective presentation.
‘We introduce here a new method for generating noneffective automorphisms whose
presentation is A, and we apply the method to answer a number of long open
questions about the orbits of c.e. sets under automorphisms of £. For example, we
show that the orbit of every noncomputable (i.e., nonrecursive) c.e. set contains
a set of high degree, and hence that for all n > 0 the well-known degree classes
L, (the low, c.e. degrees) and H, = R — H,, (the complement of the high,, c.e.
degrees) are noninvariant classes.
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Chapter XVI

Further Results and Open Questions
About R.E. Sets and Degrees

The purpose of this chapter is to give a brief overview without proofs of some
further results and current open questions about r.e. sets and r.e. degrees
which would have been covered in detail in this book if time and space had
permitted. The reader may recognize how the diverse results and methods
studied in Chapters VII through XV have been combined and extended in
these later theorems. No attempt has been made to be comprehensive, and
numerous important and current topics in recursion theory have of necessity
been omitted, such as the Turing degrees in general, recursive model theory,
effective mathematics, computational complexity, and others.

1. Automorphisms and Isomorphisms of the Lattice of R.E. Sets
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Slaman-Woodin Conjecture

Definition

Forac.e.set A, L*(A) is {W U A : W ac.e. set} under c
modulo the ideal of finite sets (F) and €*(A) is
{WnA:Wac.e. set} under < modulo ¥.

Theorem (Lachlan (1968))

For each computable Boolean Algebra B;, there is c.e. set
hhsimple H; such that £* (H;) = B;.

Corollary
The set {(i,j): L*(H;) = L*(Hj)} is Z%-complete.

Conjecture (Slaman-Woodin)

The set {(i,j) : W; = W} is 3{-complete.

Idea: Replace “L*(H;) = L*(H;)” with “W; = W;”. (Later we
will see this fails!)
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Invariant Classes

Definition
A class D of degrees is invariant if there is a class S of (c.e.)
sets such that
1. d € D implies thereisa W in S and d.
2. W € S implies deg(W) € D and
3. Sis closed under automorphic images (but need not be
one orbit).

Conjecture (Martin’s Invariance Conjecture)

Among jump classes Hy and Ly, for n > 0, and their
complements, the invariant classes are exactly Hyn_1 and

L2n.



The Mysteries

Laurie Duggan

(O < B < =r <
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The Mysteries

Laurie Duggan

Everything happens at once
We miss most of it.
The kettle boils over

And puts out the fire.
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Coding the Double Jump into ¢

Theorem (Cholak, Harrington)

Let C = {a: a is the Turing degree of a

33 set greater than 0"}, Let D < C such that D is upward
closed. Then there is a non-elementary (Ly,,w) L(A)

property @p(A) such that D" € D iff there is an A where
A=D and pp(A).
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Orbits of Hhsimple Sets

Theorem (Cholak, Harrington)
If A is hhsimple then A~ A iff £*(A) =9 L*(A).

Corollary (Cholak, Harrington)

The set {(i, ) : Wi ~ Wj and W; is hhsimple} is =2.

Hence the Slaman-Woodin plan of attack on their conjecture
fails. The proof involves coding (i.e. definability) into €.
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Automorphisms to Automorphisms

Theorem (The Conversion Theorem, Cholak,
Harrington)

If A and A are automorphic via ¥ then they are automorphic
via A where A | L*(A) =Y and A | €*(A) is Ag.
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The Scott Rank of € is w{X + 1

Theorem (Cholak, Harrington)
There is an c.e. set A such that the set

da = {i: A is automorphic to W;}

is X1 -complete.
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Avoiding an Upper Cone

Question (Cone Avoidance)
Given an incomplete c.e. degree d and an incomplete c.e. set
A, is there a A automorphic to A such thatd £1 A?

Should we expect an arithmetical answer?
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What c.e. sets are automorphic to complete sets?

By Harrington and Soare we know this is related to dynamic
properties.

Work with Peter Gerdes and Karen Lange on very tardy sets.

Again should we expect an arithmetical answer?
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D-hhsimple Sets

Definition (The sets disjoint from A)

DA)={B:AIWBcAuWand Wn A =* &)} under
inclusion. Let €p(4) be € modulo D(A).

Lemma
If A is simple then €pa) = =9 L*(A).
A is D-hhsimple iff €p(a) is a Boolean algebra. Except for the

creative sets, until recently all known orbits were orbits of
D-hhsimple sets.

Question
Are all D-hhsimple sets automorphic to complete sets?
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Which sets are automorphic to low sets?

Theorem (Epstein)

There is a properly low, degree d such that if A <7 d then A
is automorphic to a low set.

Definition (Following Maass)

A has the (Ag) low shrinking property iff for any (Ag)
simultaneous enumeration of the c.e. sets {U,|e € w} we can
effectively (Ag) assign a shrinking Us to each U, such that
US nA=*U,n A and for finite F if N;cr Us N A is infinite
then N;er Ue N A is infinite (entry states w.r.t. the shrunken
sets are the same as the entry w.r.t. given enumeration).

Conjecture (Cholak and Weber)

A is AY automorphic to a low set iff A has the AY low
shrinking property.



Harrington, - 1989 Harrington, 1989-1997 Harrington, 1997-2007 Harrington, 2007-
000000000000 00000 (o] 0000 0000e

Thanks, Leo!
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