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» From Computability and Randomness by André Nies: “As
much as we would like a paradigm such as ‘to be more
random means to be less complex’, in fact the relationship has
no overall direction.”
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Motivational Quotes

» From Computability and Randomness by André Nies: “As
much as we would like a paradigm such as ‘to be more
random means to be less complex’, in fact the relationship has
no overall direction.”

» From Algorithmic Randomness and Complexity by Rod
Downey and Denis Hirschfeldt: “...for every set A there is a
1-random set R >1A. However, heuristically speaking,
randomness should be antithetical to computational power

» For this talk, P is the paradigm “more random implies
computationally weaker"”
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Motivation

My Questions

» Why “should” P be true?
» Why is P false (for some definitions of “more random”)?
» When is P true?

» How is triviality related to the Turing degree?
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Why should P be true?

Randomly Generated Sets

» Consider a set A that is generated by a random process (in
the sense of the uniform measure on Cantor space).
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Why should P be true?

Randomly Generated Sets

» Consider a set A that is generated by a random process (in
the sense of the uniform measure on Cantor space).

» We flip a fair coin to decide if 0 is in A, then to decide if 1 is
in A, ....

» For any given null class (class of measure 0) C , the
probability that A € C is 0.

» For instance, if we fix a noncomputable set B, the probability
that A is Turing incomparable with B is 1.
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Why should P be true?

Randomly Generated Sets are Both Computationally Weak
and Complex

» In fact, a randomly generated set A is almost surely Turing
incomparable to every noncomputable arithmetic set (for
instance).
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Why should P be true?

Randomly Generated Sets are Both Computationally Weak
and Complex

» In fact, a randomly generated set A is almost surely Turing
incomparable to every noncomputable arithmetic set (for
instance).

» Thus A is computationally weak in the sense that it can't
compute any noncomputable arithmetic set.

» But A is computationally complex in the sense that it can't be
computed by any arithmetic set.
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Algorithmic Randomness

» Most common definition: A is ML-random (or 1-random) if it
passes all ML-tests.
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When is P False?

Algorithmic Randomness

» Most common definition: A is ML-random (or 1-random) if it
passes all ML-tests.

» Equivalently, VnK(A | n)>"n.
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When is P False?

Degree of Randomness: Less Random than ML-random

» (KuCera) If a > 0’ then a contains an ML-random set.
(Contrary to P, there is no limit on the computing power of
ML-random sets.)
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(Contrary to P, there is no limit on the computing power of
ML-random sets.)

» K-reducibility is defined by
A<kB < K(A| n)<TK(B | n).

» In any Turing degree there are sets that are far from random
(in the sense of K-reducibility): Any set can be coded at
locations given by the range of a fast-growing order function
f. (Contrary to P, there is sequence of sets of increasing
randomness with constant computing power.)
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When is P False?

Degree of Randomness: Less Random than ML-random

» (KuCera) If a > 0’ then a contains an ML-random set.
(Contrary to P, there is no limit on the computing power of
ML-random sets.)

» K-reducibility is defined by
A<kB < K(A| n)<TK(B | n).

» In any Turing degree there are sets that are far from random
(in the sense of K-reducibility): Any set can be coded at
locations given by the range of a fast-growing order function
f. (Contrary to P, there is sequence of sets of increasing
randomness with constant computing power.)

» | don't find it surprising that the Turing degree ( a measure of
information content) does not determine the K-degree (a
measure of data compression).
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When is P True?

Degree of Randomness: More Random than ML-random

>
>
>
>

A'is n-random if it is ML-random relative to ()("~1).

If Ais 2-random then A does not compute (.

Of course, if A is n-random then A is not computable in (1.
However, (Kautz) If a > 0(") then there is an n-random set A
with A("=1) € a,

P is true in this context, but A being n-random is not enough
to guarantee A is incomparable with all noncomputable
arithmetic sets.

v
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When is P True?

Degree of Randomness: More Random than ML-random

A is n-random if it is ML-random relative to ()("~1).

>

> If Ais 2-random then A does not compute (.

» Of course, if A is n-random then A is not computable in ("1,
>

However, (Kautz) If a > 0(") then there is an n-random set A
with A("=1) ¢ a.
» P is true in this context, but A being n-random is not enough

to guarantee A is incomparable with all noncomputable
arithmetic sets.

» What level of randomness is sufficient? For many purposes
ML-randomness (or even pseudo-randomness) is enough.
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Triviality

K-trivial Sets

v

The lowest K-degree: A is K-trivial if YnK(A | n)<tK(n).
(Chaitin) Every K-trivial set is AJ.

(Downey, Hirschfeldt, Nies and Stephan) Every K-trivial set is
Turing incomplete.

v

v

v

In fact, (Nies) Every K-trivial set is superlow (hence low).

v

Contrary to P, ML-random sets can have more computing
power than K-trivial sets.
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The K,,-trivial Sets

» K., is monotone complexity.
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» K., is monotone complexity.

> Ais Kp-trivial if VnKn(A | )<t Kn(n).

» Easy observation: Every K-trivial is Ky,-trivial.

» Theorem: If a > 0’ then a contains a K,-trivial set.
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Triviality

The K,,-trivial Sets

>
>
>
>
>

K is monotone complexity.

A'is Kp-trivial if VnK,(A | n)<T Kn(n).

Easy observation: Every K-trivial is Kp,-trivial.
Theorem: If a > 0’ then a contains a K,-trivial set.

However, there are restrictions on the Turing degrees of
Km-trivial sets.
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Triviality

The a-K-trivial and a-K,,-trivial Sets

» Let a be any nonnegative real. We say A is a-K-trivial if
VnK(A | n)<taK(n).
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William C. Calhoun Bloomsburg University

Degree of randomness versus Turing degree.



Triviality

The a-K-trivial and a-K,,-trivial Sets

» Let a be any nonnegative real. We say A is a-K-trivial if
VnK(A | n)<taK(n).
» We define a-Kj,-trivial the same way.

» Easy observation: The 1-K-trivial sets are the K-trivial sets
(same with K,).

» Easy observations: The 0-Kj,-trivial sets are the computable
sets. There are no a-K-trivial sets with a < 1.

» Easy observations: Every a-K-trivial set is a-K,-trivial. If
b > a+1, then any a-K,-trivial set is b-K-trivial.
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Triviality

The a-K-trivials are Closed Downward Under wtt
Reducibility

» This is a slight generalization of Proposition 5.2.18(i) in Nies
(which has a 3 line proof).
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Reducibility

» This is a slight generalization of Proposition 5.2.18(i) in Nies
(which has a 3 line proof).

» Suppose B = T4, where I is a wtt reduction procedure with a
computable bound f on the use.

» Then for each n,
K(B | n)<TK(A | f(n)) < aK(f(n)) < a(K(n) + b) for some
constant b.
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Triviality

The a-K-trivials are Closed Downward Under wtt
Reducibility

» This is a slight generalization of Proposition 5.2.18(i) in Nies
(which has a 3 line proof).

» Suppose B = T4, where I is a wtt reduction procedure with a
computable bound f on the use.

» Then for each n,
K(B | n)<TK(A | f(n)) < aK(f(n)) < a(K(n) + b) for some
constant b.

» Therefore, K(B | n)<*aK(n).

» (This proof and the ones below also work for a-Kp,-trivials.)
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Triviality

If a computably dominated set A is a-K-trivial, then so is
every set Turing reducible to A

» A is said to be computably dominated (or of
hyperimmune-free degree) if each function g<7A is
dominated by a computable function.
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» A is said to be computably dominated (or of
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» (Jockusch, Martin) A is computably dominated iff for all sets
B, if B<7TA then B <, A.
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Triviality

If a computably dominated set A is a-K-trivial, then so is
every set Turing reducible to A

» A is said to be computably dominated (or of
hyperimmune-free degree) if each function g<7A is
dominated by a computable function.

» (Jockusch, Martin) A is computably dominated iff for all sets
B, if B<7TA then B <, A.

» Thus A>7B — A>,u B = B is a-K-trivial.
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Triviality

Some Turing degree contains no almost-K-trivial set.

» We call a set almost-K trivial if it is a-K-trivial for some a
(equivalently a-K,-trivial for some a).
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dominated set that is not a-K-trivial cannot contain any
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Triviality

Some Turing degree contains no almost-K-trivial set.

» We call a set almost-K trivial if it is a-K-trivial for some a
(equivalently a-K,-trivial for some a).

» From the previous result, the Turing degree of a computably
dominated set that is not a-K-trivial cannot contain any
a-K-trivial.

» There is a computably dominated ML-random set: its degree
cannot contain any almost-K-trivial set.

» In particular, it doesn't contain a K,-trivial set.

» Question: Is there a Ag Turing degree that does not contain a
Km-trivial set (or almost-K-trivial set)?
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Thanks for listening!

Although he was not involved in this particular project, | would like
to thank Leo Harrington on this occasion. Leo was a great Ph.D.
advisor and continues to inspire me each time | visit Berkeley.

Thanks also to: Rod Downey and 7 for talking to me about
hyperimmune-free degrees at the Notre Dame meeting.
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