Degree of randomness versus Turing degree.

William C. Calhoun
Bloomsburg University

March 24, 2011

Motivational Quotes

- From Computability and Randomness by André Nies: "As much as we would like a paradigm such as 'to be more random means to be less complex', in fact the relationship has no overall direction."

Motivational Quotes

- From Computability and Randomness by André Nies:"As much as we would like a paradigm such as 'to be more random means to be less complex', in fact the relationship has no overall direction."
- From Algorithmic Randomness and Complexity by Rod Downey and Denis Hirschfeldt: ". . . for every set A there is a 1 -random set $\mathrm{R} \geq_{T} \mathrm{~A}$. However, heuristically speaking, randomness should be antithetical to computational power "

Motivational Quotes

- From Computability and Randomness by André Nies:"As much as we would like a paradigm such as 'to be more random means to be less complex', in fact the relationship has no overall direction."
- From Algorithmic Randomness and Complexity by Rod Downey and Denis Hirschfeldt: ". . . for every set A there is a 1 -random set $\mathrm{R} \geq_{T} \mathrm{~A}$. However, heuristically speaking, randomness should be antithetical to computational power "
- For this talk, P is the paradigm "more random implies computationally weaker"

My Questions

- Why "should" P be true?

My Questions

- Why "should" P be true?
- Why is P false (for some definitions of "more random")?

My Questions

- Why "should" P be true?
- Why is P false (for some definitions of "more random")?
- When is P true?

My Questions

- Why "should" P be true?
- Why is P false (for some definitions of "more random")?
- When is P true?
- How is triviality related to the Turing degree?

Randomly Generated Sets

- Consider a set A that is generated by a random process (in the sense of the uniform measure on Cantor space).

Randomly Generated Sets

- Consider a set A that is generated by a random process (in the sense of the uniform measure on Cantor space).
- We flip a fair coin to decide if 0 is in A, then to decide if 1 is in A, \ldots.

Randomly Generated Sets

- Consider a set A that is generated by a random process (in the sense of the uniform measure on Cantor space).
- We flip a fair coin to decide if 0 is in A, then to decide if 1 is in A, \ldots.
- For any given null class (class of measure 0) \mathcal{C}, the probability that $A \in \mathcal{C}$ is 0 .

Randomly Generated Sets

- Consider a set A that is generated by a random process (in the sense of the uniform measure on Cantor space).
- We flip a fair coin to decide if 0 is in A, then to decide if 1 is in A, \ldots.
- For any given null class (class of measure 0) \mathcal{C}, the probability that $A \in \mathcal{C}$ is 0 .
- For instance, if we fix a noncomputable set B, the probability that A is Turing incomparable with B is 1 .

Randomly Generated Sets are Both Computationally Weak and Complex

- In fact, a randomly generated set A is almost surely Turing incomparable to every noncomputable arithmetic set (for instance).

Randomly Generated Sets are Both Computationally Weak and Complex

- In fact, a randomly generated set A is almost surely Turing incomparable to every noncomputable arithmetic set (for instance).
- Thus A is computationally weak in the sense that it can't compute any noncomputable arithmetic set.

Randomly Generated Sets are Both Computationally Weak and Complex

- In fact, a randomly generated set A is almost surely Turing incomparable to every noncomputable arithmetic set (for instance).
- Thus A is computationally weak in the sense that it can't compute any noncomputable arithmetic set.
- But A is computationally complex in the sense that it can't be computed by any arithmetic set.

Algorithmic Randomness

- Most common definition: A is ML-random (or 1-random) if it passes all ML-tests.

Algorithmic Randomness

- Most common definition: A is ML-random (or 1-random) if it passes all ML-tests.
- Equivalently, $\forall n K(A \upharpoonright n) \geq^{+} n$.

Degree of Randomness: Less Random than ML-random

- (Kuc̆era) If $\mathbf{a} \geq \mathbf{0}^{\prime}$ then a contains an ML-random set. (Contrary to P, there is no limit on the computing power of ML-random sets.)

Degree of Randomness: Less Random than ML-random

- (Kuc̆era) If $\mathbf{a} \geq \mathbf{0}^{\prime}$ then a contains an ML-random set. (Contrary to P, there is no limit on the computing power of ML-random sets.)
- K-reducibility is defined by

$$
A \leq_{K} B \Longleftrightarrow K(A \upharpoonright n) \leq^{+} K(B \upharpoonright n) .
$$

Degree of Randomness: Less Random than ML-random

- (Kučera) If $\mathbf{a} \geq \mathbf{0}^{\prime}$ then a contains an ML-random set. (Contrary to P, there is no limit on the computing power of ML-random sets.)
- K-reducibility is defined by $A \leq_{K} B \Longleftrightarrow K(A \upharpoonright n) \leq^{+} K(B \upharpoonright n)$.
- In any Turing degree there are sets that are far from random (in the sense of K-reducibility): Any set can be coded at locations given by the range of a fast-growing order function f. (Contrary to P, there is sequence of sets of increasing randomness with constant computing power.)

Degree of Randomness: Less Random than ML-random

- (Kučera) If $\mathbf{a} \geq \mathbf{0}^{\prime}$ then a contains an ML-random set. (Contrary to P, there is no limit on the computing power of ML-random sets.)
- K-reducibility is defined by $A \leq_{K} B \Longleftrightarrow K(A \upharpoonright n) \leq^{+} K(B \upharpoonright n)$.
- In any Turing degree there are sets that are far from random (in the sense of K-reducibility): Any set can be coded at locations given by the range of a fast-growing order function f. (Contrary to P, there is sequence of sets of increasing randomness with constant computing power.)
- I don't find it surprising that the Turing degree (a measure of information content) does not determine the K-degree (a measure of data compression).

Degree of Randomness: More Random than ML-random

- A is n-random if it is ML-random relative to $\emptyset^{(n-1)}$.

Degree of Randomness: More Random than ML-random

- A is n-random if it is ML-random relative to $\emptyset^{(n-1)}$.
- If A is 2 -random then A does not compute \emptyset^{\prime}.

Degree of Randomness: More Random than ML-random

- A is n-random if it is ML-random relative to $\emptyset^{(n-1)}$.
- If A is 2 -random then A does not compute \emptyset^{\prime}.
- Of course, if A is n-random then A is not computable in \emptyset^{n-1}.

Degree of Randomness: More Random than ML-random

- A is n-random if it is ML-random relative to $\emptyset^{(n-1)}$.
- If A is 2 -random then A does not compute \emptyset^{\prime}.
- Of course, if A is n-random then A is not computable in \emptyset^{n-1}.
- However, (Kautz) If $\mathbf{a} \geq \mathbf{0}^{(n)}$ then there is an n-random set A with $A^{(n-1)} \in \mathbf{a}$.

Degree of Randomness: More Random than ML-random

- A is n-random if it is ML-random relative to $\emptyset^{(n-1)}$.
- If A is 2-random then A does not compute \emptyset^{\prime}.
- Of course, if A is n-random then A is not computable in \emptyset^{n-1}.
- However, (Kautz) If $\mathbf{a} \geq \mathbf{0}^{(n)}$ then there is an n-random set A with $A^{(n-1)} \in \mathbf{a}$.
- P is true in this context, but A being n-random is not enough to guarantee A is incomparable with all noncomputable arithmetic sets.

Degree of Randomness: More Random than ML-random

- A is n-random if it is ML-random relative to $\emptyset^{(n-1)}$.
- If A is 2-random then A does not compute \emptyset^{\prime}.
- Of course, if A is n-random then A is not computable in \emptyset^{n-1}.
- However, (Kautz) If $\mathbf{a} \geq \mathbf{0}^{(n)}$ then there is an n-random set A with $A^{(n-1)} \in \mathbf{a}$.
- P is true in this context, but A being n-random is not enough to guarantee A is incomparable with all noncomputable arithmetic sets.
- What level of randomness is sufficient? For many purposes ML-randomness (or even pseudo-randomness) is enough.

K-trivial Sets

- The lowest K-degree: A is K-trivial if $\forall n K(A \upharpoonright n) \leq^{+} K(n)$.

K-trivial Sets

- The lowest K-degree: A is K-trivial if $\forall n K(A \upharpoonright n) \leq^{+} K(n)$.
- (Chaitin) Every K-trivial set is Δ_{2}^{0}.

K-trivial Sets

- The lowest K-degree: A is K-trivial if $\forall n K(A \upharpoonright n) \leq^{+} K(n)$.
- (Chaitin) Every K-trivial set is Δ_{2}^{0}.
- (Downey, Hirschfeldt, Nies and Stephan) Every K-trivial set is Turing incomplete.

K-trivial Sets

- The lowest K-degree: A is K-trivial if $\forall n K(A \upharpoonright n) \leq^{+} K(n)$.
- (Chaitin) Every K-trivial set is Δ_{2}^{0}.
- (Downey, Hirschfeldt, Nies and Stephan) Every K-trivial set is Turing incomplete.
- In fact, (Nies) Every K-trivial set is superlow (hence low).

K-trivial Sets

- The lowest K-degree: A is K-trivial if $\forall n K(A \upharpoonright n) \leq^{+} K(n)$.
- (Chaitin) Every K-trivial set is Δ_{2}^{0}.
- (Downey, Hirschfeldt, Nies and Stephan) Every K-trivial set is Turing incomplete.
- In fact, (Nies) Every K-trivial set is superlow (hence low).
- Contrary to P, ML-random sets can have more computing power than K-trivial sets.

The K_{m}-trivial Sets

- K_{m} is monotone complexity.

The K_{m}-trivial Sets

- K_{m} is monotone complexity.
- A is K_{m}-trivial if $\forall n K_{m}(A \upharpoonright n) \leq^{+} K_{m}(n)$.

The K_{m}-trivial Sets

- K_{m} is monotone complexity.
- A is K_{m}-trivial if $\forall n K_{m}(A \upharpoonright n) \leq^{+} K_{m}(n)$.
- Easy observation: Every K-trivial is K_{m}-trivial.

The K_{m}-trivial Sets

- K_{m} is monotone complexity.
- A is K_{m}-trivial if $\forall n K_{m}(A \upharpoonright n) \leq^{+} K_{m}(n)$.
- Easy observation: Every K-trivial is K_{m}-trivial.
- Theorem: If $\mathbf{a} \geq \mathbf{0}^{\prime}$ then a contains a K_{m}-trivial set.

The K_{m}-trivial Sets

- K_{m} is monotone complexity.
- A is K_{m}-trivial if $\forall n K_{m}(A \upharpoonright n) \leq^{+} K_{m}(n)$.
- Easy observation: Every K-trivial is K_{m}-trivial.
- Theorem: If $\mathbf{a} \geq \mathbf{0}^{\prime}$ then a contains a K_{m}-trivial set.
- However, there are restrictions on the Turing degrees of K_{m}-trivial sets.

The a-K-trivial and a-K K_{m}-trivial Sets

- Let a be any nonnegative real. We say A is $a-K$-trivial if $\forall n K(A \upharpoonright n) \leq{ }^{+} a K(n)$.

The a-K-trivial and a-K K_{m}-trivial Sets

- Let a be any nonnegative real. We say A is $a-K$-trivial if $\forall n K(A \upharpoonright n) \leq^{+} a K(n)$.
- We define a- K_{m}-trivial the same way.

The a-K-trivial and a-K K_{m}-trivial Sets

- Let a be any nonnegative real. We say A is a-K-trivial if $\forall n K(A \upharpoonright n) \leq^{+} a K(n)$.
- We define a- K_{m}-trivial the same way.
- Easy observation: The $1-K$-trivial sets are the K-trivial sets (same with K_{m}).

The a-K-trivial and a-K K_{m}-trivial Sets

- Let a be any nonnegative real. We say A is $a-K$-trivial if $\forall n K(A \upharpoonright n) \leq^{+} a K(n)$.
- We define a- K_{m}-trivial the same way.
- Easy observation: The $1-K$-trivial sets are the K-trivial sets (same with K_{m}).
- Easy observations: The $0-K_{m}$-trivial sets are the computable sets. There are no $a-K$-trivial sets with $a<1$.

The a-K-trivial and a- K_{m}-trivial Sets

- Let a be any nonnegative real. We say A is $a-K$-trivial if $\forall n K(A \upharpoonright n) \leq^{+} a K(n)$.
- We define a- K_{m}-trivial the same way.
- Easy observation: The $1-K$-trivial sets are the K-trivial sets (same with K_{m}).
- Easy observations: The $0-K_{m}$-trivial sets are the computable sets. There are no a-K-trivial sets with $a<1$.
- Easy observations: Every a - K-trivial set is a- K_{m}-trivial. If $b>a+1$, then any a - K_{m}-trivial set is b - K-trivial.

The a-K-trivials are Closed Downward Under wtt Reducibility

- This is a slight generalization of Proposition 5.2.18(i) in Nies (which has a 3 line proof).

The a-K-trivials are Closed Downward Under wtt Reducibility

- This is a slight generalization of Proposition 5.2.18(i) in Nies (which has a 3 line proof).
- Suppose $B=\Gamma^{A}$, where Γ is a wtt reduction procedure with a computable bound f on the use.

The a-K-trivials are Closed Downward Under wtt Reducibility

- This is a slight generalization of Proposition 5.2.18(i) in Nies (which has a 3 line proof).
- Suppose $B=\Gamma^{A}$, where Γ is a wtt reduction procedure with a computable bound f on the use.
- Then for each n, $K(B \upharpoonright n) \leq^{+} K(A \upharpoonright f(n)) \leq a K(f(n)) \leq a(K(n)+b)$ for some constant b.

The a-K-trivials are Closed Downward Under wtt Reducibility

- This is a slight generalization of Proposition 5.2.18(i) in Nies (which has a 3 line proof).
- Suppose $B=\Gamma^{A}$, where Γ is a wtt reduction procedure with a computable bound f on the use.
- Then for each n, $K(B \upharpoonright n) \leq^{+} K(A \upharpoonright f(n)) \leq a K(f(n)) \leq a(K(n)+b)$ for some constant b.
- Therefore, $K(B \upharpoonright n) \leq^{+} a K(n)$.

The a-K-trivials are Closed Downward Under wtt Reducibility

- This is a slight generalization of Proposition 5.2.18(i) in Nies (which has a 3 line proof).
- Suppose $B=\Gamma^{A}$, where Γ is a wtt reduction procedure with a computable bound f on the use.
- Then for each n, $K(B \upharpoonright n) \leq^{+} K(A \upharpoonright f(n)) \leq a K(f(n)) \leq a(K(n)+b)$ for some constant b.
- Therefore, $K(B \upharpoonright n) \leq^{+} a K(n)$.
- (This proof and the ones below also work for $a-K_{m}$-trivials.)

If a computably dominated set A is a-K-trivial, then so is every set Turing reducible to A

- A is said to be computably dominated (or of hyperimmune-free degree) if each function $g \leq_{T} A$ is dominated by a computable function.

If a computably dominated set A is $a-K$-trivial, then so is every set Turing reducible to A

- A is said to be computably dominated (or of hyperimmune-free degree) if each function $g \leq_{T} A$ is dominated by a computable function.
- (Jockusch, Martin) A is computably dominated iff for all sets B, if $B \leq_{T} A$ then $B \leq_{t t} A$.

If a computably dominated set A is a-K-trivial, then so is

 every set Turing reducible to A- A is said to be computably dominated (or of hyperimmune-free degree) if each function $g \leq_{T} A$ is dominated by a computable function.
- (Jockusch, Martin) A is computably dominated iff for all sets B, if $B \leq_{T} A$ then $B \leq_{t t} A$.
- Thus $A \geq_{T} B \Longrightarrow A \geq_{w t t} B \Longrightarrow B$ is a-K-trivial.

Some Turing degree contains no almost-K-trivial set.

- We call a set almost- K trivial if it is a-K-trivial for some a (equivalently $a-K_{m}$-trivial for some a).

Some Turing degree contains no almost-K-trivial set.

- We call a set almost- K trivial if it is a-K-trivial for some a (equivalently $a-K_{m}$-trivial for some a).
- From the previous result, the Turing degree of a computably dominated set that is not $a-K$-trivial cannot contain any a-K-trivial.

Some Turing degree contains no almost-K-trivial set.

- We call a set almost- K trivial if it is a-K-trivial for some a (equivalently $a-K_{m}$-trivial for some a).
- From the previous result, the Turing degree of a computably dominated set that is not $a-K$-trivial cannot contain any a-K-trivial.
- There is a computably dominated ML-random set: its degree cannot contain any almost- K-trivial set.

Some Turing degree contains no almost-K-trivial set.

- We call a set almost- K trivial if it is a-K-trivial for some a (equivalently $a-K_{m}$-trivial for some a).
- From the previous result, the Turing degree of a computably dominated set that is not a - K-trivial cannot contain any a-K-trivial.
- There is a computably dominated ML-random set: its degree cannot contain any almost- K-trivial set.
- In particular, it doesn't contain a K_{m}-trivial set.

Some Turing degree contains no almost-K-trivial set.

- We call a set almost- K trivial if it is a-K-trivial for some a (equivalently $a-K_{m}$-trivial for some a).
- From the previous result, the Turing degree of a computably dominated set that is not $a-K$-trivial cannot contain any a-K-trivial.
- There is a computably dominated ML-random set: its degree cannot contain any almost- K-trivial set.
- In particular, it doesn't contain a K_{m}-trivial set.
- Question: Is there a Δ_{2}^{0} Turing degree that does not contain a K_{m}-trivial set (or almost- K-trivial set)?

Thanks for listening!

Although he was not involved in this particular project, I would like to thank Leo Harrington on this occasion. Leo was a great Ph.D. advisor and continues to inspire me each time I visit Berkeley.

Thanks also to: Rod Downey and ? for talking to me about hyperimmune-free degrees at the Notre Dame meeting.

