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Motivational Quotes

I From Computability and Randomness by André Nies:“As
much as we would like a paradigm such as ‘to be more
random means to be less complex’, in fact the relationship has
no overall direction.”

I From Algorithmic Randomness and Complexity by Rod
Downey and Denis Hirschfeldt: “. . . for every set A there is a
1-random set R ≥TA. However, heuristically speaking,
randomness should be antithetical to computational power
. . . ”

I For this talk, P is the paradigm“more random implies
computationally weaker”
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My Questions

I Why “should” P be true?

I Why is P false (for some definitions of “more random”)?

I When is P true?

I How is triviality related to the Turing degree?
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Randomly Generated Sets

I Consider a set A that is generated by a random process (in
the sense of the uniform measure on Cantor space).

I We flip a fair coin to decide if 0 is in A, then to decide if 1 is
in A, . . . .

I For any given null class (class of measure 0) C , the
probability that A ∈ C is 0.

I For instance, if we fix a noncomputable set B, the probability
that A is Turing incomparable with B is 1.
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Randomly Generated Sets are Both Computationally Weak
and Complex

I In fact, a randomly generated set A is almost surely Turing
incomparable to every noncomputable arithmetic set (for
instance).

I Thus A is computationally weak in the sense that it can’t
compute any noncomputable arithmetic set.

I But A is computationally complex in the sense that it can’t be
computed by any arithmetic set.
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Algorithmic Randomness

I Most common definition: A is ML-random (or 1-random) if it
passes all ML-tests.

I Equivalently, ∀nK (A � n)≥+n.

William C. Calhoun Bloomsburg University

Degree of randomness versus Turing degree.



Motivation Why should P be true? When is P False? When is P True? Triviality Thanks

Algorithmic Randomness

I Most common definition: A is ML-random (or 1-random) if it
passes all ML-tests.

I Equivalently, ∀nK (A � n)≥+n.

William C. Calhoun Bloomsburg University

Degree of randomness versus Turing degree.



Motivation Why should P be true? When is P False? When is P True? Triviality Thanks

Degree of Randomness: Less Random than ML-random

I (Kuc̆era) If a ≥ 0′ then a contains an ML-random set.
(Contrary to P, there is no limit on the computing power of
ML-random sets.)

I K -reducibility is defined by
A≤KB ⇐⇒ K (A � n)≤+K (B � n).

I In any Turing degree there are sets that are far from random
(in the sense of K -reducibility): Any set can be coded at
locations given by the range of a fast-growing order function
f . (Contrary to P, there is sequence of sets of increasing
randomness with constant computing power.)

I I don’t find it surprising that the Turing degree ( a measure of
information content) does not determine the K -degree (a
measure of data compression).
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Degree of Randomness: More Random than ML-random

I A is n-random if it is ML-random relative to ∅(n−1).

I If A is 2-random then A does not compute ∅′.
I Of course, if A is n-random then A is not computable in ∅n−1.

I However, (Kautz) If a ≥ 0(n) then there is an n-random set A
with A(n−1) ∈ a.

I P is true in this context, but A being n-random is not enough
to guarantee A is incomparable with all noncomputable
arithmetic sets.

I What level of randomness is sufficient? For many purposes
ML-randomness (or even pseudo-randomness) is enough.
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K -trivial Sets

I The lowest K -degree: A is K -trivial if ∀nK (A � n)≤+K (n).

I (Chaitin) Every K -trivial set is ∆0
2.

I (Downey, Hirschfeldt, Nies and Stephan) Every K -trivial set is
Turing incomplete.

I In fact, (Nies) Every K -trivial set is superlow (hence low).

I Contrary to P, ML-random sets can have more computing
power than K -trivial sets.
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The Km-trivial Sets

I Km is monotone complexity.

I A is Km-trivial if ∀nKm(A � n)≤+Km(n).

I Easy observation: Every K -trivial is Km-trivial.

I Theorem: If a ≥ 0′ then a contains a Km-trivial set.

I However, there are restrictions on the Turing degrees of
Km-trivial sets.
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The a-K -trivial and a-Km-trivial Sets

I Let a be any nonnegative real. We say A is a-K -trivial if
∀nK (A � n)≤+aK (n).

I We define a-Km-trivial the same way.

I Easy observation: The 1-K -trivial sets are the K -trivial sets
(same with Km).

I Easy observations: The 0-Km-trivial sets are the computable
sets. There are no a-K -trivial sets with a < 1.

I Easy observations: Every a-K -trivial set is a-Km-trivial. If
b > a + 1, then any a-Km-trivial set is b-K -trivial.
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The a-K -trivials are Closed Downward Under wtt
Reducibility

I This is a slight generalization of Proposition 5.2.18(i) in Nies
(which has a 3 line proof).

I Suppose B = ΓA, where Γ is a wtt reduction procedure with a
computable bound f on the use.

I Then for each n,
K (B � n)≤+K (A � f (n)) ≤ aK (f (n)) ≤ a(K (n) + b) for some
constant b.

I Therefore, K (B � n)≤+aK (n).

I (This proof and the ones below also work for a-Km-trivials.)
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The a-K -trivials are Closed Downward Under wtt
Reducibility

I This is a slight generalization of Proposition 5.2.18(i) in Nies
(which has a 3 line proof).

I Suppose B = ΓA, where Γ is a wtt reduction procedure with a
computable bound f on the use.

I Then for each n,
K (B � n)≤+K (A � f (n)) ≤ aK (f (n)) ≤ a(K (n) + b) for some
constant b.

I Therefore, K (B � n)≤+aK (n).

I (This proof and the ones below also work for a-Km-trivials.)

William C. Calhoun Bloomsburg University

Degree of randomness versus Turing degree.



Motivation Why should P be true? When is P False? When is P True? Triviality Thanks

The a-K -trivials are Closed Downward Under wtt
Reducibility

I This is a slight generalization of Proposition 5.2.18(i) in Nies
(which has a 3 line proof).

I Suppose B = ΓA, where Γ is a wtt reduction procedure with a
computable bound f on the use.

I Then for each n,
K (B � n)≤+K (A � f (n)) ≤ aK (f (n)) ≤ a(K (n) + b) for some
constant b.

I Therefore, K (B � n)≤+aK (n).

I (This proof and the ones below also work for a-Km-trivials.)

William C. Calhoun Bloomsburg University

Degree of randomness versus Turing degree.



Motivation Why should P be true? When is P False? When is P True? Triviality Thanks

The a-K -trivials are Closed Downward Under wtt
Reducibility

I This is a slight generalization of Proposition 5.2.18(i) in Nies
(which has a 3 line proof).

I Suppose B = ΓA, where Γ is a wtt reduction procedure with a
computable bound f on the use.

I Then for each n,
K (B � n)≤+K (A � f (n)) ≤ aK (f (n)) ≤ a(K (n) + b) for some
constant b.

I Therefore, K (B � n)≤+aK (n).

I (This proof and the ones below also work for a-Km-trivials.)

William C. Calhoun Bloomsburg University

Degree of randomness versus Turing degree.



Motivation Why should P be true? When is P False? When is P True? Triviality Thanks

If a computably dominated set A is a-K -trivial, then so is
every set Turing reducible to A

I A is said to be computably dominated (or of
hyperimmune-free degree) if each function g≤TA is
dominated by a computable function.

I (Jockusch, Martin) A is computably dominated iff for all sets
B, if B≤TA then B ≤tt A.

I Thus A≥TB =⇒ A ≥wtt B =⇒ B is a-K -trivial.
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Some Turing degree contains no almost-K -trivial set.

I We call a set almost-K trivial if it is a-K -trivial for some a
(equivalently a-Km-trivial for some a).

I From the previous result, the Turing degree of a computably
dominated set that is not a-K -trivial cannot contain any
a-K -trivial.

I There is a computably dominated ML-random set: its degree
cannot contain any almost-K -trivial set.

I In particular, it doesn’t contain a Km-trivial set.

I Question: Is there a ∆0
2 Turing degree that does not contain a

Km-trivial set (or almost-K -trivial set)?
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Thanks for listening!

Although he was not involved in this particular project, I would like
to thank Leo Harrington on this occasion. Leo was a great Ph.D.
advisor and continues to inspire me each time I visit Berkeley.

Thanks also to: Rod Downey and ? for talking to me about
hyperimmune-free degrees at the Notre Dame meeting.
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