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LOGICISM AND ABSTRACTION

Goal of the talk: to present a formalization of first-order arithmetic
characterized by the following:

1 Natural numbers are identified with abstracta of the
equinumerosity relation;

2 Abstraction itself receives a deflationary construal — abstracts
have no special ontological status.

3 Logicism is articulated in a non-reductionist fashion: rather than
reducing arithmetic to principles whose logical character is
questionable, we take seriously Frege’s idea that cardinality is a
logical notion.

4 The formalization uses two main technical tools:
A first-order (binary) cardinality quantifier F expressing “For every A
there is a (distinct) B’s”;
An abstraction operator Num assigning first-level objects to
predicates.

5 The logicist banner is then carried by the quantifier, rather than by
Hume’s Principle.

6 Finally, the primary target of the formalization are the cardinal
properties of the natural numbers, rather than the structural ones.
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ARITHMETICAL REDUCTION STRATEGIES . . .

The main formalization strategies for first-order arithmetic:

The Peano-Dedekind approach: numbers are primitive, their
properties given by the usual axioms;

The Frege-Russell tradition: natural numbers are identified
with equinumerosity classes;

The Zermelo-von Neumann implementation: natural
numbers are identified with particular representatives of
those equivalence classes, e.g.

∅, {∅}, {{∅}}, {{{∅}}}, . . .

or
∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, . . .

Note: Numbers are not always members of the equivalence
classes they represent — e.g., the Zermelo numerals.
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. . . AND THEIR LIMITATIONS

None of these are completely satisfactory:

The Dedekind-Peano approach completely ignores the
cardinal properties of numbers while only focusing on the
structural ones.

The Frege-Russell tradition is more general, correctly
derives structural properties from cardinal ones, but it is
higher-order.

The Zermelo-von Neumann implementation can be carried
out at the first-order but at the price of identifying the
natural numbers with a particular kind of entities
(Benacerraf problem). Cardinal properties are derived from
structural ones, and then only thanks to embedding of N
into a rich set-theoretic universe.

Note: In keeping with Benacerraf, on the present view of
abstraction the issue of the “ultimate nature” of numbers is a
pseudo-problem.
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THE NEO-LOGICIST APPROACH

FREGE’S THEOREM

Peano Arithmetic is interpretable in second-order logic (including
second-order comprehension) augmented by “Hume’s Principle.”

Hume’s Principle (HP) asserts that:

Num(F) = Num(G)⇐⇒ F ≈ G,

where Num is an abstraction operator mapping second-order
variables into objects, and F ≈ G abbreviates the second-order
claim that there is a bijection between F and G.

The neo-logicists hail this result as a realization of Frege’s
program, based on the claimed privileged status of HP.

But not only is such a status debatable (more later), but the
second-order nature of logical framework makes it intractable.
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ABSTRACTION PRINCIPLES

The notion of a “classifier” is known from descriptive set theory:

DEFINITION

If R is an equivalence relation over a set X, a classifier for R is a function
f : X → Y such that f(x) = f(y)⇐⇒ R(x, y).

An abstraction operator is a classifier f for the specific case in which
X = P(Y), i.e., an assignment of first-order objects to “concepts”
(predicates, subsets of the first-order domain), which is governed by
the given equivalence relation.

An abstraction principle is a statement to the effect that the operator f
assigns objects to concepts according to the given equivalence R:

AbR : f(X) = f(Y)⇐⇒ R(X,Y).

Abstraction principles are often characterized as the preferred vehicle
for the delivery of a special kind of objects — so-called abstract entities
— whose somewhat mysterious nature includes such properties as
non-spatio-temporal existence and causal inefficacy.
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DIGRESSION: HILBERT ’S ε-CALCULUS

The ε-calculus comprises the two principles:

(1) φ(x)→ φ(εx.φ(x))
(2) ∀x(φ(x)↔ ψ(x))→ εx.φ(x) = εx.ψ(x)
Addition of:

(3) εx.φ(x) = εx.ψ(x)→ ∀x(φ(x)↔ ψ(x)).
would give an abstraction principle witnessed by a choice
function. Can the above be consistently added to the ε-calculus?

Principle (3) has no finite models: in a finite domain there
is no injection of the (definable) concepts into the objects.

Principles (1) and (3) are inconsistent: there is no injective
choice function on the power-set of a set of size > 1.

Principles (2) and (3) give the first-order fragment of
Frege’s Grundgesetze and are therefore consistent (T.
Parsons).
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THE LIMITATIONS OF LOGICISM

Contemporary neo-logicists pursue a reductionist version of
logicism: arithmetic is reducible to a principle (HP) enjoying a
logically privileged status.

But this version is subject to several objections:

1 The Bad Company objection: HP looks very much like other
inconsistent principles (Boolos, Heck);

2 The Embarassment of Riches objection: there are pairwise
inconsistent principles, each one of which is individually
consistent (Weir);

3 The Logical Invariance objection: depending on how exactly
one formulates invariance, HP might not be invariant under
permutations, which is (at least) a necessary condition for
logicality (Tarski, Feferman, McGee, Sher, Bonnay).

The first two are well known, so we focus on the last one.
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LOGICAL INVARIANCE

Invariance under permutation was first identified by Tarski as a
criterion demarcating logical notions, on the idea that such
notions are independent of the subject matter.

A predicate P is invariant iff π[P] = P for every permutation π,
where π[P] is the point-wise image of P under π.

The following are all invariant:

One-place predicates: ∅, D;

Two place predicates: ∅, D2, =, 6=;

Predicates definable (in FOL, infinitary logic, etc.) from
invariant predicates.

(And conversely, invariant notions are all definable in a possibly
higher-order or infinitary language [McGee]).

Notions of invariance are available for entities further up the
type hierarchy, e.g., quantifiers. But there is no accepted notion
of invariance for abstraction principles.
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NOTIONS OF INVARIANCE FOR ABSTRACTION

There are, prima facie, three different ways in which invariance can
be applied to abstraction. Let R be an equivalence relation on a
domain D and f : P(D)→ D the corresponding operator. These
notions are:

Invariance of the equivalence relation R;
Invariance of the operator f ;
Invariance of the abstraction principle AbR: f(X) = f(Y) iff
R(X,Y).

More formally:

DEFINITION

R is simply invariant iff R(X, π[X]) holds for any permutation π.
f is objectually invariant if it is invariant as a set-theoretic
entity: i.e., if and only if π[f ] = f for any π.
AbR is contextually invariant iff, for any operator f and
permutation π, π[f ] satisfies the principle whenever f does.
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IS ABSTRACTION LOGICALLY INVARIANT?

PROPOSITION

No function f satisfying HP is objectually invariant.

In fact, the above can be generalized:

THEOREM

Let f be an abstraction operator and suppose that |D| > 1 and
suppose R is simply invariant. Then f is not objectually invariant.

REMARK

Simple invariance is the strongest notion of invariance for R, and a
very plausible necessary condition on R, but is not germane to the
invariance of abstraction. The equinumerosity relation ≈ is simply
invariant.

Objectual invariance is the notion that speaks to the character of
abstraction as a logical operation. We see that objectual invariance
is quite rare and mostly incompatible with simple invariance.
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CONTEXTUAL INVARIANCE

REMARK

If every fR satisfying an abstraction principle is objectually
invariant, then the principle itself is contextually invariant.

PROPOSITION

If R is simply invariant then the corresponding abstraction
principle is contextually invariant.

COROLLARY

HP is contextually invariant (since ≈ is simply invariant), but
contextual invariance does not amount to much, implied by a
notion of invariance of R even weaker than simple invariance.
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NON-REDUCTIONIST LOGICISM: A FRESH START

M. Dummett pointed out that in the true spirit of logicism:

“Cardinality is already a logical notion”

and does not need a reduction to a more fundamental principle
to show that it is.

And in fact, cardinality is permutation invariant: the cardinality
of a set does not change under permutations of the domain.

Reductionist versions of logicism and neo-logicism would seem
to suffer from an equivocation: it is the notion of cardinality, not
that of number, that has some claim to being logically innocent.

We want to pursue this more general construal of logicism by
building cardinality right into the language in the form of a
primitive quantifier.
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DETOUR: THE MODERN VIEW OF QUANTIFIERS

Following Frege in §21 of Grundgesetze der Arithmetik, Montague
and Mostowski defined a quantifier Q over a domain D as a
collection of predicates. For instance:

∀ = {D};
∃!k = {X ⊆ D : |X| = k};
Some = {(A,B) : A ∩ B 6= ∅};
Most = {(A,B) : |A ∩ B| > |A− B|}.

Quantifiers are distinguished by the number as well as the
dimensions of their arguments, i.e., the number of formulas
appearing as arguments as well as the number of their variables.

The notion of Permutation invariance applies to quantifiers: Q(A,B)
holds iff Q(π[A], π[B]) holds.

Whereas first-order quantifiers are collections of relations over D,
second-order quantifiers are relations over first-order quantifiers.
The distinction between first- and second-order is semantical,
not merely notational.
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THE FREGE QUANTIFIER F

SEMANTIC DEFINITION

The Frege quantifier F has the semantics: F(A,B)⇐⇒ |A| ≤ |B|.
Similarly for the polyadic version of F: for R, S ⊆ Dn: F(R, S)⇐⇒ |R| ≤ |S|.

SYNTACTIC DEFINITION

The first-order language LF comprises formulas built up from individual,
predicate, and function constants by means of connectives and the
quantifier Fx satisfying the clause:

if φ(x), ψ(x) are formulas in x, then Fx(φ(x), ψ(x)) is a formula;

and similarly for the polyadic version.

In either its monadic or polyadic variants, F is a binary first-order quantifier
(just like Most).

EQUINUMEROSITY

The equinumerosity (Härtig’s) quantifier I x(φ(x), ψ(x)) is definable as the
conjunction Fx(φ(x), ψ(x)) ∧ Fx(ψ(x), φ(x)).

The definition is correct by the Schröder-Bernstein theorem.
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STANDARD SEMANTICS FOR LF

A model M with non-empty domain D provides an interpretation for
the non-logical constants of LF.

In the monadic case, given a formula ϕ(x) and assignment s,
satisfaction M |= ϕ[s] is defined recursively in the usual way for atomic
formulas and Boolean combinations. For the quantifier we have the
clauses:

JϕKx
s = {d ∈ D : M |= ϕ[sd

x]}
M |= Fx(ϕ(x), ψ(x))[s]⇐⇒ ∃f : JϕKx

s
1−1−→ JψKx

s

The definition by simultaneous recursion is standardly extended to the
polyadic case.

The standard first order quantifiers are expressible in LF:

∀xϕ(x) = Fx(¬ϕ(x), x 6= x);
∃xϕ(x) = ¬Fx(ϕ(x), x 6= x).
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CHARACTERIZING THE NATURAL NUMBERS

There is an axiom of infinity in the pure identity fragment of LF:

AxInf: ∃yFx(x = x, x 6= y).

AxInf is true in all and only the infinite models, and as a
consequence, compactness fails.

Abbreviate the statement that {x : φ(x)} is Dedekind finite:
∀y¬Fx(φ(x), φ(x) ∧ x 6= y) by Fin x(φ(x)).

Let ϕω be the conjunction of the two sentences of LF(<):
< is a strict transitive linear order with a first element; and
∀x Fin y(y < x).

The sentence ϕω is true if and only if < has order type ≤ ω.
Then ϕω ∧ AxInf is true precisely if < is a countably infinite
linear order. The conjunction of this sentence with axioms
giving recursive definitions for addition and multiplication
characterizes the standard model (N,+,×) up to isomorphism.
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THE GENERAL INTERPRETATION OF QUANTIFIERS

On the standard interpretation, the Frege quantifier is very
expressive. Is there an alternative?

Henkin showed that second-order quantifiers can be given a general
interpretation, on which they range over some collection C of
subsets of D, usually satisfying some closure conditions. What
seems to have escaped attention is that first-order quantifiers can
also be so interpreted.

On the standard interpretation ∃ ranges over the collection of all
non-empty subsets of D and dually ∀ denotes {D}.
On the general interpretation, ∃ ranges over some collection C of
non-empty subsets of D (where C itself is allowed to be empty),
and dually ∀ ranges over some collection of subsets of D of which D
itself is a member.

Interestingly, the question “What is the logic of ∃ on the general
interpretation?” has a simple if unexpected answer: positive free
logic.
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GENERAL SEMANTICS FOR F
A general model M for LF provides a non-empty domain D, interpretations for
the non-logical constants, and a collection F of 1-1 functions f : A→ B with
dom(f) = A, and rng(f) ⊆ B, for A,B ⊆ Dk. The satisfaction clause for monadic
F then is:

M |= Fx(φ(x), ψ(x))[s]⇐⇒ (∃f ∈ F ) f : JφKx
s

1−1−→ JψKx
s

We want F to satisfy six closure conditions:

1 For each A ⊆ D, the identity map on A belongs to F , including the empty map on
∅;

2 if f1 : A1 → B1 and f2 : A2 → B2 are in F , where: A1 ∩ A2 = ∅ and B1 ∩ B2 = ∅;
then f1 ∪ f2 ∈ F as well;

3 if f : A→ B is in F then also f−1 is in F ;

4 if f ∈ F and f : A→ B and x /∈ A and y /∈ B, then there is a g ∈ F such that
g : A ∪ {x} → B ∪ {y};

5 if f : A→ C ∈ F and B ⊆ A then also f � B ∈ F ;

6 if f : A→ B and g : B→ C are in F then so is f ◦ g.

The existence of empty maps ensures that ∀ and ∃, as defined using F, receive
their proper interpretation. Similarly, closure under composition gives
transitivity.
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THE ABSTRACTION OPERATOR

We further expand the language by introducing the abstraction
operator Num. Strictly speaking, Num is a variable-binding
operator:

if x is a variable and ϕ a formula, Numx ϕ(x) is a term.

A general model is a structure M providing a non-empty domain
D and interpretations for the non-logical constants, a collection
F of 1-1 functions, as well as a function η : P(D)→ D
providing an interpretation for the abstraction operator. (No
class of functions need be specified for a standard model.)
Satisfaction and reference are now defined by simultaneous
recursion:

M |= Fx(ϕ(x), ψ(x))[s]⇐⇒ (∃f ∈ F ) f : JϕKx
s

1−1−→ JψKx
s .

JNum x.ϕ(x)Ks = η(JϕKx
s ).
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AXIOMATIZING ARITHMETIC

Since LF interprets the standard quantifiers ∃ and ∀, we could
just use the Peano-Dedekind axioms (with no mention of Num).
But we would rather like to focus on the cardinal properties of
numbers, rather than their structural ones.

Accordingly, we give a first-order theory formalizing arithmetic
in the Frege-Russell tradition, with numbers “representing”
equivalence classes of equinumerous concepts. The theory will
have some claim to being a non-reductionist implementation of
logicism.

The language LF comprises extra-logical constants: a binary
relation ≤, and a 1-place predicate N.

Special extra-logical axioms will specify the interaction of Num
and the Frege quantifier.
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DEFINITIONAL AND UNIQUENESS AXIOMS

Hume’s Principle:

Ax1 Num(ϕ) = Num(ψ)↔ Iz(ϕ(z), ψ(z))

Definition of the “less-than” relations:

Num(ϕ) ≤ Num(ψ)↔ Fz(ϕ(z), ψ(z));Ax2

Num(ϕ) < Num(ψ)↔ [Fz(ϕ(z), ψ(z)) ∧ ¬Fz(ψ(z), ϕ(z))];Ax3

Definition of “x is a natural number”:

Ax4 ∀x(N(x)↔ Fin y(N(y) ∧ y < x) ∧ x = Num(N(y) ∧ y < x))

“x is a natural numbers if and only if x is the number of the
concept ‘natural number less than x’ and moreover such a
concept is finite.” This a contextual definition of N.
The successor relation (Succ implicitly binds a variable):

Ax5 Succ(ϕ,ψ)↔ ∃x(ψ(x) ∧ Iy(ϕ(y), ψ(y) ∧ y 6= x);
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COMPREHENSION (AND INDUCTION?)

A form of comprehension axiom:

Ax5 ∀x[ϕ(x)→ ∃!y(ψ(y) ∧ θ(x, y))]→ Fx(ϕ(x), ψ(x)).

The axiom expresses the closure of the set F of injections under
definability, and therefore subsumes the existence of the empty and
identity maps.

The axiom allows us to prove that N is not Dedekind-finite: it’s an
“infinitary” axiom. It is also important for the principle of induction.
We could explicitly add a Principle of Induction, in the form “Every
finite, non empty set of numbers has a maximum”:

[∃x(N(x) ∧ ϕ(x)) ∧ Fin x(N(x) ∧ ϕ(x))]→
∃y[(N(y) ∧ ϕ(y)) ∧ ∀x(N(x) ∧ ϕ(x)→ x ≤ y)],

and then prove ∀x((∀y < x)ϕ(y)→ ϕ(x))→ ∀xϕ(x).
But it turns out that we can provide a direct proof of induction from
the remaining axioms.
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ARITHMETICAL AXIOMS FOR + AND ×

The theory of successor and ≤ can be formulated in the
monadic fragment of LF (where F only binds a single variable
at a time). Representation of addition and multiplication
requires the dyadic version (so we can count pairs).

Multiplication is more naturally represented than addition: let
Prod(ϕ,ψ, θ) abbreviate “the number of θ equals the number of
ϕ multiplied by the number of ψ,” as follows:

Ax6 Ixy(ϕ(x) ∧ ψ(y), θ(x) ∧ x = y)

Addition: let Sum(ϕ,ψ, θ) abbreviate “the number of θ equals
the number of ϕ plus the number of ψ,” as follows:

Ax7 Ixy((x = 0 ∧ ϕ(y)) ∨ (x = 1 ∧ ψ(y)), θ(x) ∧ x = y);
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DEVELOPING ARITHMETIC

We interpret Peano Arithmetic in the theory with F and Num.
We proceed semantically, and show that (analogues of) the PA
axioms hold in every general model satisfying the axioms (and a
fortiori in every standard model)

N(0): where 0 abbreviates Numx(x 6= x); i.e., 0 is a number.

For numbers p and q let Num abbreviate
Succ(N(x) ∧ x < p,N(x) ∧ x < q); then every number has a
unique successor.

Every number other than 0 is a successor (it’s important
that this provable without induction).

Succ is an injective function.

Moreover, by the infinitary axiom, ¬Finx(N(x)) holds as well,
with Succ witnessing the injection. The infinitary axiom is
crucial also in the proof of induction.
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THE PRINCIPLE OF INDUCTION

THEOREM

The Principle of Induction in the form[
ϕ(0) ∧ ∀n(ϕ(n)→ ϕ(n + 1))

]
→ ∀nϕ(n),

can be derived in LF from Ax1-Ax5, relativizing all quantifiers ∀n to N.

PROOF SKETCH

Assume ϕ(0) and ∀n(ϕ(n)→ ϕ(n + 1)) but ¬ϕ(m) for some m. Since
N(m), the set of all p < m is Dedekind finite. Now define:

f(p) =

{
p if ϕ(p),
p− 1 if ¬ϕ(p).

One checks that: the function is well defined, because ϕ(0); rng f is a
proper subset of {p : p < m}, because f(m) < m; and f is injective. The
inifinitary axiom now gives Fp(p < m, p < m− 1), contra
Dedekind-finiteness. (the elementary arithmetical facts needed for the
proof can be established without induction.)

ALDO ANTONELLI, UC DAVIS ARITHMETIC WITH THE FREGE QUANTIFIER DATE: 2011 ASL MEETING SLIDE: 26/27



CONCLUSIONS

We have thus given an account that is:

1 driven by the cardinal properties of the natural numbers, with
the structural properties “supervenient” upon the former (note
that ordinal properties seem harder to capture);

2 firmly seated in the Frege-Russell tradition characterizing the
natural numbers as either identical, or intimately connected, to
equinumerosity classes;

3 entirely at the first order from a semantical point of view.

We leave open the choice between the standard and the general
interpretation of F: on the former the axioms are categorical, and
on the latter significant arithmetical facts are still representable.

The “ultimate nature” of numbers is left unexplained by the
account — as it should be. Numbers are picked as “representatives”
of equivalence classes (of which they are not themselves members),
but need not (and cannot) themselves be members those classes.

This leads to a deflation of general worries about abstract objects:
rather than being drawn from a separate realm, they are just
ordinary objects recruited for the purpose.
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