Logic and the Methodology of Science Autumn 2002 Preliminary Exam Draft

August 23, 2005

1. Let φ_e be the e^{th} partial recursive function in some standard enumeration, and let W_e be the domain of φ_e). Show that there is no partial recursive function ψ such that if W_e is recursive then $\psi(e)$ converges and $\varphi_{\psi(e)}$ is the characteristic function of W_e .

2. Let *L* be the language with = and just one unary function symbol *f*. Let *T* be the *L*-theory whose axioms are: (1) $\forall x \forall y (f(x) = f(y) \rightarrow x = y, (2)) \forall y \exists x (f(x) = y)$, and for each $n < \omega$, the axiom $(3)_n$:

 $\forall x (f^n(x) \neq x),$

where $f^n(x) = f(f(...f(x)..))$, with f occurring n times. Show

- (a) T is complete,
- (b) T is decidable,
- (c) T is not finitely axiomatizable.

3. Let Fin := $\{e \in \omega : W_e \text{ is finite}\}$. Show that Fin is not recursively enumerable.

4. Let T be a theory in a countable language, and suppose T has infinite models. Show that there are models \mathcal{A}_q of T, defined for q a rational number, so that

$$q < r \Rightarrow (\mathcal{A}_q \prec \mathcal{A}_r \land \mathcal{A}_q \neq \mathcal{A}_r).$$

5. Call a set $A \subseteq \omega$ simple if A is r.e., $\omega \setminus A$ is infinite, and for all infinite r.e. sets $B, A \cap B \neq \emptyset$.

(a) Let $f: \omega \to \omega$ be total, recursive, and injective. Show that

 $\operatorname{ran}(f)$ is nonrecursive $\Leftrightarrow \{m \mid \exists n(m < n \land f(n) < f(m))\}$ is simple.

(b) Let $A \subseteq \omega$, and suppose there is a partial recursive ψ such that whenever $W_e \cap A = \emptyset$, then $\psi(e)$ converges and $\psi(e) \notin A \cup W_e$. Show that A is not simple.

6. Call a structure \mathcal{A} homogeneous iff whenever $n < \omega$ and $a_1, ..., a_n, b_1, ..., b_n \in |\mathcal{A}|$ and

$$(\mathcal{A}, a_1, \dots, a_n) \equiv (\mathcal{A}, b_1, \dots, b_n),$$

then there is an automorphism π of \mathcal{A} such that $\pi(a_i) = b_i$ for all $i \leq n$.

- (a) Show that if \mathcal{A} and \mathcal{B} are countable, homogeneous structures for the same language, and \mathcal{A} and \mathcal{B} realize the same *n*-types, for all *n*, then $\mathcal{A} \cong \mathcal{B}$.
- (b) Let \mathcal{A} be a countable structure for a countable language. Show there is a countable, homogeneous structure \mathcal{B} such that $\mathcal{A} \prec \mathcal{B}$.
 - 7. Let L be the language with one binary relation symbol.
- (a) Show that if T is a consistent, recursively axiomatizable L-theory, then T has a model of the form (ω, R) , where R is Δ_2^0 .
- (b) Show that if T is a consistent, decidable L-theory, then T has a model of the form (ω, R) , where R is recursive.
- (c) Give an example of a consistent, recursively axiomatizable L-theory with no model of the form (ω, R) , for R recursive. [Hint: You may assume there is an infinite, recursive binary tree with no recursive infinite branch. Also, you are welcome to change L to the language of Peano Arithmetic, and prove the corresponding result there, if it helps you.]

8. Let Prov(x) be a standard formula in the language of Peano Arithmetic (PA) asserting that x is the Godel number of a sentence which is provable in PA. Let φ be a sentence in the language of PA, let $\check{\varphi}$ be the numeral for the Godel number of φ , and suppose

$$\mathsf{PA} \vdash \operatorname{Prov}(\check{\varphi}) \to \varphi.$$

Show that PA proves φ . [Hint: use Godel's theorem to show that $\mathsf{PA} \cup \{\neg \varphi\}$ is inconsistent.]