GROUP IN LOGIC AND THE METHODOLOGY OF SCIENCE
PRELIMINARY EXAMINATION

There are eight questions. Partial credit may be assigned for substantially correct partially worked solutions. To pass, you need a score of roughly fifty percent, though the ultimate decision about the passing mark will be decided by the committee of graders.

1. Prove or refute:
 (a) If A and B are disjoint Σ^0_1 subsets of ω, then there is a Δ^0_1 set C such that $A \subseteq C$ and C is disjoint from B.
 (b) If A and B are disjoint Π^0_1 subsets of ω, then there is a Δ^0_1 set C such that $A \subseteq C$ and C is disjoint from B.

2. Let T be a decidable theory in a finite language, and suppose all models of T are infinite. Show T has a model \mathfrak{A} with universe ω such that the satisfaction relation $\{ (\phi, \overline{m}) | \mathfrak{A} \models \phi(\overline{m}) \}$ is recursive.

3. Show that there is a model $\mathfrak{M} \models \text{PA}$ of Peano arithmetic and $a \in |\mathfrak{M}| \setminus \mathbb{N}$ a nonstandard element of the universe of \mathfrak{M} which is definable.

4. Let \mathfrak{A} be an L-structure and two elements a and b of the universe of \mathfrak{A}. Show that the following are equivalent.
 (a) There is a definable function f for which $f(a) = b$.
 (b) For any elementary extension $\mathfrak{B} \succeq \mathfrak{A}$ and automorphism $\sigma : \mathfrak{B} \to \mathfrak{B}$, if $\sigma(a) = a$, then $\sigma(b) = b$.

5. Let $L = L(U, V)$ be the first-order language having exactly two unary predicate symbols, U and V, and no other nonlogical symbols. Describe all the of the complete theories in L. You should show that the theories you propose are distinct and that they exhaust all of the completions.

6. Let $\{ W_e \}_{e \in \omega}$ be the usual enumeration of the recursively enumerable sets. Show that $\text{Fin} := \{ e \in \omega : W_e \text{ is finite} \}$ is Σ^0_2-complete.

7. Let $\mathfrak{A} = (U, I, f, g, \ldots)$ be a structure for a finite language L, where I is a unary relation and f and g are binary functions. Let π be an isomorphism from $(\mathbb{N}, +, \times)$ to $(I, f \upharpoonright I, g \upharpoonright I)$. For ϕ an L-sentence, let $\text{GN}(\phi)$ be the Gödel number of ϕ in some reasonable Gödel numbering.
 Show that $\{ \pi(\text{GN}(\phi)) | \phi \text{ is an } L\text{-sentence and } \mathfrak{A} \models \phi \}$ is not definable over \mathfrak{A} without parameters.

8. Give an example of a pair of first order languages $L \subseteq L'$ and complete theories $T \subseteq T'$ in L and L', respectively, for which T' is \aleph_1-categorical but T has more than one model of cardinality \aleph_1. [Prove that your proposed example works.]

Date: 30 June 2008.