Logic and the Methodology of Science June 2004 Preliminary Exam

August 23, 2005

1.

- (a) Outline a proof that the theory of rings is not decidable.
- (b) Show that the set \mathcal{V} of all valid formulae in the language of rings is not recursive.

2. Let \mathcal{L} be the language with one binary relation symbol R, and no other nonlogical symbols. Let T be a consistent, decidable \mathcal{L} - theory.

- (a) Show that there is a complete, consistent, decidable \mathcal{L} -theory U such that $T \subseteq U$.
- (b) Show that T has a model $\mathcal{A} = (A, R^{\mathcal{A}})$ such that A and $R^{\mathcal{A}}$ are recursive.

3. Let M be a nonstandard model of Peano Arithmetic. Let $\theta(u, v)$ be the natural formula in the language of Peano arithmetic expressing "the u^{th} prime divides v". Show that for some $a \in M$,

$$\{i \in \omega \mid M \models \theta[\underline{i}^M, a]\}$$

is not recursive.

4. Let T be an axiomatizable \mathcal{L} -theory, and suppose there are only finitely many complete \mathcal{L} -theories U such that $T \subseteq U$. Show that T is decidable.

5. Let

$$A = \{ e \mid W_e \text{ is infinite and } W_e \neq \omega \},\$$

and

$$B = \{e \mid \varphi_e \text{ is total and } \operatorname{range}(\varphi_e) \neq \omega\},\$$

where φ_e is the e^{th} partial recursive function of one variable in some standard enumeration, and W_e is the domain of φ_e . Prove or refute: $A \leq_m B$.

6. Let T be a theory in a countable language, and suppose that T has an infinite model. Show that T has a model which admits a nontrivial automorphism.

7. Let $\mathsf{ZFC}^{\text{fin}}$ be ZFC , but with the axiom of infinity replaced by its negation, together with axioms defining names \underline{a} for each herditarily finite set a. (If you prefer, you may do this problem with Peano Arithmetic replacing $\mathsf{ZFC}^{\text{fin}}$ throughout, letting \underline{a} be the standard closed term for $a \in \omega$.) Let $\langle W_e \mid e \in \omega \rangle$ be a standard enumeration of the r.e. sets, as in problem 4 above. Let $\theta(u, v)$ be the natural formula in the language of $\mathsf{ZFC}^{\text{fin}}$ which formalizes the assertion " $W_u = W_v$ ".

- (a) Show there is an *e* such that for all *n*, $\mathsf{ZFC}^{\text{fin}} + \theta(\underline{e}, \underline{n})$ is consistent. (Hint: use the recursion theorem.)
- (b) Show that if e is as in part (a), then $W_e = \emptyset$.
- (c) Show that there are e_0, e_1 such that for all m, n, $\mathsf{ZFC}^{\text{fin}} + \theta(\underline{e_0}, \underline{m}) + \theta(\underline{e_1}, \underline{n})$ is consistent.
- (d) Use (c) to show that there are Π_1 sentences φ and ψ in the language of $\mathsf{ZFC}^{\text{fin}}$ such that $\mathsf{ZFC}^{\text{fin}} \nvDash \varphi \to \psi$

and

$$\mathsf{ZFC}^{\operatorname{fin}} \not\vdash \psi \to \varphi.$$

8. A graph is a structure $\mathcal{G} = (V, E)$ for the language \mathcal{L} with one binary relation symbol such that E is a symmetric relation on V. The \mathcal{G} -component of a vertex $v \in V$ is the set of all $u \in V$ such that there is a finite sequence

 $\langle v_0, ..., v_n \rangle$ with $v = v_0, u = v_n$, and $v_i E v_{i+1}$ for all i < n. \mathcal{G} is connected iff it has only one component.

Let \mathcal{G} be a graph such that whenever $\varphi(u, v)$ is an \mathcal{L} -formula such that $\mathcal{G} \models \exists u \exists v \varphi(u, v)$, then there are a, b in the same component of \mathcal{G} such that $\mathcal{G} \models \varphi[a, b]$. Show that there is a connected graph \mathcal{H} such that $\mathcal{H} \equiv \mathcal{G}$.

9. An *existential* formula is one of the form $\exists v_0 ... \exists v_n \theta$, where θ is quantifierfree. An AE formula is one of the form $\forall v_0 ... \forall v_n \exists u_0 ... \exists u_k \theta$, where θ is quantifier-free. We write $\mathcal{A} \prec_1 \mathcal{B}$ iff $\mathcal{A} \subseteq \mathcal{B}$, and whenever $a_1, ..., a_n \in |\mathcal{A}|$ and φ is existential, then $\mathcal{A} \models \varphi[a_1, ..., a_n]$ iff $\mathcal{B} \models \varphi[a_1, ..., a_n]$.

- (a) Suppose $\mathcal{A} \prec_1 \mathcal{B}$, and show there is a structure \mathcal{C} such that $\mathcal{B} \subseteq \mathcal{C}$ and $\mathcal{A} \prec \mathcal{C}$.
- (b) Suppose that $\mathcal{A} \models \varphi$, for all AE sentences φ such that $T \vdash \varphi$. Show that there is a model $\mathcal{B} \models \mathcal{T}$ such that $\mathcal{A} \prec_1 \mathcal{B}$.
- (c) Let T be a theory which is preserved under unions of substructure chains. Show that there is a set of axioms for T consisting of AE sentences.