Throughout this exam, we use the notation \{W_e\}_{e \in \mathbb{N}} for a standard listing of the recursively enumerable sets.

1. Prove or disprove: If \(\mathcal{M} \models \text{PA} \) is a model of Peano arithmetic and \(a \in |\mathcal{M}| \smallsetminus \mathbb{N} \) is a nonstandard element of the universe of \(\mathcal{M} \), then \(a \) is not definable.

2. Show that \(\{e: W_e \text{ is recursive}\} \) is a \(\Sigma^0_3 \) complete subset of \(\mathbb{N} \).

3. Let \(\mathcal{L} \) be a countable first-order language. Suppose that \(T \) is a consistent \(\mathcal{L} \)-theory having infinite models. Show that there is a model \(\mathcal{M} \models T \) of cardinality \(\aleph_1 \) in which at most \(\aleph_1 \) 1-types are realized.

4. Say that two sets \(U \) and \(V \) are recursively inseparable if there is no recursive set \(R \) such that \(U \subseteq R \) and \(V \subseteq \mathbb{N} \smallsetminus R \). (Here \(\mathbb{N} \smallsetminus R \) denotes the complement of \(R \) in \(\mathbb{N} \).)

 (1) Show that there is a pair of disjoint, recursively inseparable, recursively enumerable sets.

 (2) Show that any pair of disjoint \(\Pi^0_1 \) sets (ie. complements of recursively enumerable sets) is not recursively inseparable.

5. Let \(\mathcal{L} = \mathcal{L}(U) \) be the first-order language having one non-logical unary relation symbol, \(U \). Prove or disprove: the set of validities in \(\mathcal{L} \) is recursive (relative to the natural recursive encoding of \(\mathcal{L} \)).

6. Show that the class of existentially closed groups is not first-order axiomatizable.
 [Hint: If \(G \) is a group and \(\alpha : G \to G \) is an automorphism, then the semidirect product \(H := G \rtimes \mathbb{Z} \) in which \((g, n) \cdot (h, m) = (g\alpha^n(h), n+m) \) is an extension group of \(G \).]

7. Suppose that \(f \) is a total recursive function. Prove or give a counter-example to each of the following.

 (1) There is an \(e \) such that \(W_{f(e)} = \{e\} \).

 (2) There is an \(e \) such that \(W_e = \{f(e)\} \).

8. Let \(T \) be an \(\aleph_0 \)-categorical theory in a countable language and \(\mathcal{M} \models T \) a countably infinite model of \(T \). What is the cardinality of the automorphism group of \(\mathcal{M} \)? (Prove that your answer is correct.)

9. Prove or disprove: The usual operation of addition is definable in the structure \((\mathbb{Q}, \cdot)\).