LOGIC AND THE METHODOLOGY OF SCIENCE PRELIMINARY EXAMINATION

Throughout this exam, we use the notation $\{W_e\}_{e \in \mathbb{N}}$ for a standard listing of the recursively enumerable sets.

1. Prove or disprove: If $\mathfrak{N} \models PA$ is a model of Peano arithmetic and $a \in |\mathfrak{N}| \setminus \mathbb{N}$ is a nonstandard element of the universe of \mathfrak{N} , then a is not definable.

2. Show that {e: W_e is recursive} is a Σ_3^0 complete subset of \mathbb{N} .

3. Let \mathcal{L} be a countable first-order language. Suppose that T is a consistent \mathcal{L} -theory having infinite models. Show that there is a model $\mathfrak{M} \models T$ of cardinality \aleph_1 in which at most \aleph_0 1-types are realized.

4. Say that two sets U and V are recursively inseparable if there is no recursive set R such that $U \subseteq R$ and $V \subseteq \mathbb{N} \setminus R$. (Here $\mathbb{N} \setminus R$ denotes the complement of R in \mathbb{N} .)

- (1) Show that there is a pair of disjoint, recursively inseparable, recursively enumerable sets.
- (2) Show that any pair of disjoint Π_1^0 sets (i.e. complements of recursively enumerable sets) is not recursively inseparable.

5. Let $\mathcal{L} = \mathcal{L}(U)$ be the first-order language having one non-logical unary relation symbol, U. Prove or disprove: the set of validities in \mathcal{L} is recursive (relative to the natural recursive encoding of \mathcal{L}).

6. Show that the class of existentially closed groups is *not* first-order axiomatizable. [Hint: If G is a group and $\alpha : G \to G$ is an automorphism, then the semidirect product $H := G \rtimes \mathbb{Z}$ in which $(g, n) \cdot (h, m) = (g\alpha^n(h), n+m)$ is an extension group of G.]

7. Suppose that f is a total recursive function. Prove or give a counter-example to each of the following.

- (1) There is an e such that $W_{f(e)} = \{e\}$.
- (2) There is an e such that $W_e = \{f(e)\}.$

8. Let T be an \aleph_0 -categorical theory in a countable language and $\mathfrak{M} \models T$ a countably infinite model of T. What is the cardinality of the automorphism group of \mathfrak{M} ? (Prove that your answer is correct.)

9. Prove or disprove: The usual operation of addition is definable in the structure (\mathbb{Q}, \cdot) .

Date: 16 January 2008.