1. Let $\varphi(v)$ be a formula in the language of Peano Arithmetic (PA).

(a) Suppose that $\varphi(v)$ is Σ_1, and $\text{PA} \vdash \exists v \varphi(v)$. Show that $\text{PA} \vdash \varphi(\bar{n})$ for some numeral \bar{n}.

(b) Give an example of a formula $\varphi(v)$ such that $\text{PA} \vdash \exists v \varphi(v)$, but for all n, PA does not prove $\varphi(\bar{n})$.

(c) Suppose $\varphi(v)$ is Σ_1 and T is a consistent extension of PA such that $T \vdash \exists v \varphi(v)$. Does it follow that $T \vdash \varphi(\bar{n})$ for some n.

2. Show there is a one-one 2-ary partial recursive function Ψ such that for every one-one 1-ary partial recursive f, there is an e such that for all i, $f(i) = \Psi(e, i)$.

3. Let L be a finite language, and let T be an axiomatizable L-theory. Fix a recursive enumeration of T, and let T_n be the first n sentences of T in this enumeration. Suppose $M \models \text{PA}$ is such that $M \models \text{Con}(T_n)$ for all n. (On the right hand side, “T_n” should be interpreted as the numeral for the Godel number of T_n.) Show that M interprets a model of T; that is, there is a model of T whose universe, functions, and relations are all definable from parameters over M.

4. Let E be an r.e. equivalence relation on ω, and suppose E is not recursive. Show
(a) \(E \) has infinitely many equivalence classes,

(b) for each \(n \), there are infinitely many equivalence classes whose cardinality is different from \(n \).

5. Let \(A \) be an r.e. set, and \(B = \{ e | W_e = A \} \). Show that either \(B \) is a \(\Delta^0_2 \) set, or \(B \) is a complete \(\Pi^0_2 \) set.

6. (a) A graph is a set with an irreflexive, symmetric binary relation. Show there is a graph \(G = (V, E) \) such that whenever \(J \) and \(K \) are disjoint finite subsets of \(V \), then there is an \(a \in G \) such that

\[
\forall b \in J(aEb) \text{ and } \forall b \in K(\neg aEb).
\]

(b) Show that if \(G \) is a graph as in part (a), then the theory of \(G \) is decidable.

7. Show that the theory of \((\mathbb{Q}, +)\) is decidable.

8. Let \(T \) be the theory of \((\mathbb{Z}, +)\). How many countable models (up to isomorphism) does \(T \) have?

9. Let \(T \) be a complete theory in a countable language. Show that the following are equivalent:

(a) \(T \) has a prime model \(A \) such that there is a \(B \prec A \) with \(B \neq A \),

(b) \(T \) has an uncountable atomic model.