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"Compurtability is perhaps the most significant and
distinctive notion modern logic has infroduced. .. ”

— Wilfried Sieg *

* *On computability”, Handbook of the Philosophy of Mathematics, 2009



Disclaimers

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut enim, inquit, gubernator aeque peccat, si palearum navem
evertit et si auri, item aeque peccat, qui parenfem et qui servum iniuria verberat. Qui si omnes veri erunt, ut Epicuri
ratio docet, fum denique poterit aliquid cognosci et percipi. Si ista mala sunt, in quae potest incidere sapiens,
sapientem esse non esse ad beate vivendum satis. Non metuet autem, sive celare poterit, sive opibus magnis
quicquid fecerit optinere, certeque malet existimari bonus vir, ut non sit, quam esse, ut non putetur. Unum, cum in
voluptate sumus, alterum, cum in dolore, tertium hoc, in quo nunc equidem sum, credo item vos, nec in dolore nec in
voluptate; Quibus natura iure responderit non esse verum aliunde finem beate vivendi, a se principia rei gerendae
peti; Istud quidem, inquam, optime dicis, sed quaero nonne tibi faciendum idem sit nihil dicenti bonum, quod non
rectum honestumaque sit, reliquarum rerum discrimen omne tollenti. Duo Reges: constructio interrete.

Eaedem enim utilitates poterunt eas labefactare atque pervertere. Si enim Zenoni licuit, cum rem aliquam invenisset
inusitatam, inauditum quoque ei rei nomen inponere, cur non liceat Catoni? Quasi vero aut concedatur in omnibus
stultis aeque magna esse vitia, et eadem inbecillitate et inconstantia L. Quoniamque non dubium est quin in iis, quae
media dicimus, sit aliud sumendum, aliud reiciendum, quicquid ita fit aut dicitur, omne officio continetur. Pomponius
Luciusque Cicero, frater noster cognatione patruelis, amore germanus, constituimus infer nos ut ambulationem
postmeridianam conficeremus in Academia, maxime quod is locus ab omni turba id temporis vacuus esset. Ego
autem tibi, Piso, assentior usu hoc venire, ut acrius aliquanto et attentius de claris viris locorum admonitu cogitemus.
Cur igitur easdem res, inquam, Peripateticis dicentibus verbum nullum est, quod non intellegatur? Quoniam igitur, ut
medicina valitudinis, navigationis gubernatio, sic vivendi ars est prudente, necesse est eam quoque ab aliqua re esse
constitutam et profectam. Nunc reliqua videamus, nisi aut ad haec, Cato, dicere aliquid vis aut nos iam longiores
sumus. Afque haec contra Aristippum, qui eam voluptatem non modo summam, sed solam etiam ducit, quam omnes
unam appellamus voluptatem. Teneamus enim illud necesse est, cum consequens aliquod falsum sit, illud, cuius id
consequens sit, non posse esse verum. Qui autem diffidet perpetuitati bonorum suorum, timeat necesse est, ne
aliquando amissis illis sit miser. Inest in eadem explicatione naturae insatiabilis quaedam e cognoscendis rebus
voluptas,in qua una confectis rebus necessariis vacui negotiis honeste ac liberaliter possimus vivere. Non ergo Epicurus
ineruditus, sed ii indocti, qui, quae pueros non didicisse turpe est, ea putant usque ad senectutem esse discenda.
Ratio quidem vestra sic cogit. Vos autem cum perspicuis dubia debeatis illustrare, dubiis perspicua conamini tollere.
Ego autem: Ne tu, inquam, Cato, ista exposuisti, ut tam multa memoriter, ut tam obscura, dilucide, itaque aut
omittamus contra omnino velle aliquid aut spatium sumamus ad cogitandum;

Tantus est igitur innatus in nobis cognitionis amor et scientiae, ut nemo dubitare possit quin ad eas res hominum natura
nullo emolumento invitata rapiatur. Itaque illa non dico me expetere, sed legere, nec optare, sed sumere, contraria
autem non fugere, sed quasi secernere. Vos autem cum perspicuis dubia debeatis illustrare, dubiis perspicua
conamini tollere. Quid enim mihi potest esse optatius quam cum Catone, omnium virtutum auctore, de virtutibus
disputare? In omni enim arte vel studio vel quavis scientia vel in jpsa virtute optimum quidque rarissimum est. Utrum
enim sit voluptas in iis rebus, quas primas secundum naturam esse diximus, necne sit ad id, quod agimus, nihil interest.
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Computability, definability, and combinatorics M ‘?‘

"Recursion Theory: That part of mathematical logic
which is focused on definability, especially for subsets of
the natural numbers (w) and of the real numbers (2).”

— Ted Slaman *

Post's Thm. A C wis £0_, iff it is §(")-c.e.

Low Basis Thm (Jockusch and Soare). Every nonempty I‘I? subset
of 2 has a low element.

CC2¥is I'I? iff there is a computable binary tfree whose infinite
paths are the elements of C.

* Recursion Theory, Godel Lecture, ASL Annual Meeting, Philadelphia, PA, 2001
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WKL: Every infinite binary tree has an infinite path.

An oracle can find such paths for all computable trees iff it has
PA Turing degree.

An infinite set C is cohesive for Ry, Ry,...ifVi(C C* R, v C C* R)).
COH: Every sequence has a cohesive set.

Thm (Jockusch and Stephan). An oracle can find cohesive sets
for all uniformly computable sequences iff its jump has PA Turing
degree over 0'.
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A is enumeration reducible 1o B, denoted by A <, B, if there is an
enumeration operator W s.t. A = W8,

There is an embedding of the Turing degrees into the e-degrees,
induced by A— A@ A.

An e-degree is fotal if it is in the image of this embedding.

Thm (Cai, Ganchev, Lempp, Miller, and Soskova). The total
e-degrees are definable in the e-degrees.
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For aset S, let pp(S)
The lower density p(S) of Sis liminf, pn(S).

A generic description of Ais a partial function f s.1.
p(dom(f)) = 1 and f(n) = A(n) where defined.

A is (nonuniformly) generically reducible to B if for every generic
description g of B, there is a generic descriptfion f of As.t.
graph(f) <. graph(g).

Open Questions. Are there minimal pairs in the generic degrees?
What about minimal degrees?

Igusa has significant partial results.
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Coarse computability bounds e & ;

Ais coarsely computable at density r if there is a computable
set Csuch that p({n: C(n) = A(n)}) > .

Let v(A) = sup{r: Ais coarsely computable at density r}.
For a Turing degree a, let ['(a) = inf{y(A) : A € a}.

For a truth-table degree a, let I',,(a) = inf{y(A) : A € a}.
If a is a hyperimmune Turing degree then I'(a) = 0.

If ais the tt-degree of a (Martin-L&f) random set then I',.(a) = %

Thm (Monin). I'(a) and I',,(a) are always 0, % or1l.
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Computability on a cone R e

Thm (Martin) (AD). If C C 2% is closed under = then either C or C
contains a cone {X : A < X}.

Montalbdn: Study relativizable properties on a cone.

The degree spectrum of a relation R on a structure 2 is
DgSpy(R) = {deg,(R?) : B is a computable copy of 2A}.

Thm (Hirschfeldt). DgSp, (R) can be {0,c} for any c.e. c.
Thm (Harizanov). On a cone, DgSpy(R) = {0} or DgSpy(R) 2 Z?.

Thm (Harrison-Trainor). On a cone, DgSpy (R) C Ag or
DgSpy(R) 2 2-CEA.

Open Question. Can these results be extended beyond 27?
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Vaught’s Conjecture M ;

Vaught’s Conjecture: The number of countable models of a
first-order theory (or an L, .,-sentence) is either < Rg or 2o,

A class K of structures satisfies hyperarithmetic-is-recursive if
every hyperarithmetic structure in K has a computable copy.

Thm (Spector). The class of well-orders satisfies
hyperarithmetic-is-recursive.

Note that the class of well-orders is not axiomatizable, even by
an L, ,-sentence.

Thm (Montalban) (PD). T is a counterexample to Vaught's
Conjecture iff the class of countable models of T is uncountable
(up to isomorphism) and satisfies hyperarithmetic-is-recursive on
a cone.
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Effective Mathematics of the Uncountable R e
Approaches discussed in the book:

R-computability (Calvert and Porter)

Infinite time Turing machines (Coskey and Hamkins)
Admissible computability on w; (Greenberg and Knight)
Local computability (Miller)

Borel structures (Montalbdn and Nies)

E-recursion (Sacks)

Reverse mathematics (Shore)

Y -definability (Stukachev)
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C C 2% is Muchnik (or weakly) reducible to D C 2%, written C <, D,
if every element of D computes an element of C.

For countable structures 2L and B, we write 2 <, B if every copy
of B computes a copy of L.

Schweber extended this idea to possibly uncountable structures:

2 is generically Muchnik reducible to B if for any generic
extension V[G] in which 2 and B are countable, V[G] F A <, B.

Knight, Montalbdn, and Schweber showed that it does not
matter if we take “any” to mean “there exists” or “for all”.



Part IV: Inferactions with other fields




Algorithmic randomness, analysis, and ergodic theory

Two recent meetings:

Computability, Analysis, and Geometry, Banff, 2015

Algorithmic Randomness Interacts with Analysis and
Ergodic Theory, Oaxaca, 2016



Algorithmic randomness, analysis, and ergodic theory

Two recent meetings:

Computability, Analysis, and Geometry, Banff, 2015

Algorithmic Randomness Interacts with Analysis and
Ergodic Theory, Oaxaca, 2016

One theme: quantifying “almost all” results.



Algorithmic randomness, analysis, and ergodic theory

Two recent meetings:

Computability, Analysis, and Geometry, Banff, 2015

Algorithmic Randomness Interacts with Analysis and
Ergodic Theory, Oaxaca, 2016

One theme: quantifying “almost all” results.

A monotonic f : [0, 1] — R is differentiable almost everywhere.



Algorithmic randomness, analysis, and ergodic theory &9

Two recent meetings:

Computability, Analysis, and Geometry, Banff, 2015

Algorithmic Randomness Interacts with Analysis and
Ergodic Theory, Oaxaca, 2016

One theme: quantifying “almost all” results.
A monotonic f : [0, 1] — R is differentiable almost everywhere.

Thm (Brattka, Miller, and Nies). x € [0, 1) is computably random iff
every computable monotonic f : [0, 1] — R is differentiable at x.
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Algorithmic randomness, analysis, and ergodic theory &9

A dynamical system consists of a probability space (2, B, 1) and
afunction T: Q — Qs.t. u(T-1(B)) = u(B) for all B € B.

Thm (Birkhoff). If 7 : Q — R is L' then
limp, 1 nz] f(T'x)
N
exists for almost all x.
We call such x weak Birkhoff for (Q, B, u, T) and f.

Fix Q = 2¢ with the uniform measure .

Thm (V’yugin / Franklin and Towsner). A € 2% is Martin-Lof
random iff A is weak Birkhoff for all computable T and f.
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Algorithmic dimension and fractal geometry
dimg(C) is the Hausdorff dimension of C C R".

The effective Hausdorff dimension dim(x) of a point x can be
defined using Kolmogorov complexity.

Thm (Hitchcock). If ¢ C R" is a union of MY sets then
dimg(C) = supyee dim(x).

Thm (J. Lutz and N. Lutz). For all ¢ C R", we have
dim(€) = Min 4 SUP e diM™(x).

Thm (Kahane; Mattila). For all Borel C, D € R" and almost alll
z € R", we have dimg(C N (D + z)) < max(0, dimg(C x D) — n}.

Thm (N. Lutz). This Intersection Formula holds for allC, D C R",
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Reverse mathematics
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Reverse mathematics

We work in a two-sorted 1st order language with number
variables, set variables, and symbols 0, 1, S, <, +, -, €.

A model in this language consists of a 1st order part
N = (N;0p, Tn, SN, <n, +, -n) and a 2nd order part S € 2N,

If A is standard, we call this an w-model and identify it with S,

The base theory RCAg includes A?-comprehension and
¥9-induction.

Thm (Friedman). An w-model satisfies RCA iff it is a Turing ideal.
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RT) for n > 3 is af the level of arithmetic comprehension.

RT2 is more interesting.
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A coloring ¢ : [N]? — k is stable if lim,, c(x, y) exists for all x.
SRTZ is RT3 restricted to stable colorings.

SRTZ can be seen as RT) relative to (.

Thm (Cholak, Jockusch, and Slaman / Mileti / Jockusch and
Lempp). RCA F RT3 <> (SRTZ + COH).

Thm (Cholak, Jockusch, and Slaman). RCA, + COH ¥ RT3,
Cholak, Jockusch, and Slaman asked: Does SRTZ imply RT3?

Equivalently, does SRT% imply COH?
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RT2 and SRT3 —

Thm (Jockusch). There is a computable 2-coloring of pairs with
no AY infinite homogeneous set.

Cor (Hirst). WKLg ¥ RT3,
Thm (Liu). RCAg + RT3 ¥ WKLy,

Thm (Downey, Hirschfeldt, Lempp, and Solomon). There is a
stable 2-coloring of pairs with no low infinite homogeneous set.

Thm (Chong, Slaman, and Yang). RCAq + SRT3 ¥ RT3,

They build low infinite homogeneous sets for all stable 2-colorings
of pairs over a nonstandard first-order universe.

Open Question. Can this separation happen in w-models?
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The first order part of RT3 i SR

Thm (Harrington). WKLy is I‘I]—conservo’rive over RCAq.
Thm (Hirst). RCAq + RT3 F BE.

Thm (Chong, Slaman, and Yang). RCAg + RT% ¥ IZS.
Open Question. What is the first-order strength of RT%?
A NY formula is one of the form VX ¢(X), where ¢ is M3,

Thm (Patey and Yokoyama). WKLg + RT% is ﬁg—conservo’rive
over RCAq.



M} principles
Consider a principle
P=vX[O(X) — IYA(X,Y)]
with © and A arithmetic.
We think of P as a problem.

An instance of this problem is an X such that ©(X) holds.

A solution to this instance is a Y such that A(X, Y) holds.
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Computable reducibility

P is computably reducible to , written as P <, Q), if
for every instance X of P,

there is an X-computable instance X of Qs.t.,
for every solution Yito X,

thereisan X @ V—Compu’roble solution to X.

-<
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The uniform version is Weihrauch reducibility, <.
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SRT3 and COH

Open Question. Is COH <, SRT5?
Thm (Dzhafarov). COH g, SRT3.

Strong omniscient computable reducibility

X X
Y «— Y
Open Question. Is COH <, RT5?

Thm (Patey; Hirschfeldt and Jockusch). RT} £,.. RT4.
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Hindman’s Theorem * B

HT: For every finite coloring of N, there is an infinite S C N s.t.
every sum of distinct elements of S has the same color.

Thm (Blass, Hirst, and Simpson). HT is provable in ACASr and
implies ACAg.

Open Question. Does ACAg + HT?
HTS" Is HT for sums of at most n elements.

Open Question (Hindman, Leader, and Strauss). Is there a proof
of HT<? that is not a proof of HT?

Open Question. Does HT<2 imply HT, say over RCAg?
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