
Computability Theory: A Jaunt

Denis R. Hirschfeldt — University of Chicago

Logic at UC Berkeley, May 5th, 2017

“Computability is perhaps the most significant and
distinctive notion modern logic has introduced. . . ”

— Wilfried Sieg ∗

∗ “On computability”, Handbook of the Philosophy of Mathematics, 2009



Computability Theory: A Jaunt

Denis R. Hirschfeldt — University of Chicago

Logic at UC Berkeley, May 5th, 2017

“Computability is perhaps the most significant and
distinctive notion modern logic has introduced. . . ”

— Wilfried Sieg ∗

∗ “On computability”, Handbook of the Philosophy of Mathematics, 2009



Disclaimers

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut enim, inquit, gubernator aeque peccat, si palearum navem
evertit et si auri, item aeque peccat, qui parentem et qui servum iniuria verberat. Qui si omnes veri erunt, ut Epicuri
ratio docet, tum denique poterit aliquid cognosci et percipi. Si ista mala sunt, in quae potest incidere sapiens,
sapientem esse non esse ad beate vivendum satis. Non metuet autem, sive celare poterit, sive opibus magnis
quicquid fecerit optinere, certeque malet existimari bonus vir, ut non sit, quam esse, ut non putetur. Unum, cum in
voluptate sumus, alterum, cum in dolore, tertium hoc, in quo nunc equidem sum, credo item vos, nec in dolore nec in
voluptate; Quibus natura iure responderit non esse verum aliunde finem beate vivendi, a se principia rei gerendae
peti; Istud quidem, inquam, optime dicis, sed quaero nonne tibi faciendum idem sit nihil dicenti bonum, quod non
rectum honestumque sit, reliquarum rerum discrimen omne tollenti. Duo Reges: constructio interrete.
Eaedem enim utilitates poterunt eas labefactare atque pervertere. Si enim Zenoni licuit, cum rem aliquam invenisset
inusitatam, inauditum quoque ei rei nomen inponere, cur non liceat Catoni? Quasi vero aut concedatur in omnibus
stultis aeque magna esse vitia, et eadem inbecillitate et inconstantia L. Quoniamque non dubium est quin in iis, quae
media dicimus, sit aliud sumendum, aliud reiciendum, quicquid ita fit aut dicitur, omne officio continetur. Pomponius
Luciusque Cicero, frater noster cognatione patruelis, amore germanus, constituimus inter nos ut ambulationem
postmeridianam conficeremus in Academia, maxime quod is locus ab omni turba id temporis vacuus esset. Ego
autem tibi, Piso, assentior usu hoc venire, ut acrius aliquanto et attentius de claris viris locorum admonitu cogitemus.
Cur igitur easdem res, inquam, Peripateticis dicentibus verbum nullum est, quod non intellegatur? Quoniam igitur, ut
medicina valitudinis, navigationis gubernatio, sic vivendi ars est prudente, necesse est eam quoque ab aliqua re esse
constitutam et profectam. Nunc reliqua videamus, nisi aut ad haec, Cato, dicere aliquid vis aut nos iam longiores
sumus. Atque haec contra Aristippum, qui eam voluptatem non modo summam, sed solam etiam ducit, quam omnes
unam appellamus voluptatem. Teneamus enim illud necesse est, cum consequens aliquod falsum sit, illud, cuius id
consequens sit, non posse esse verum. Qui autem diffidet perpetuitati bonorum suorum, timeat necesse est, ne
aliquando amissis illis sit miser. Inest in eadem explicatione naturae insatiabilis quaedam e cognoscendis rebus
voluptas,in qua una confectis rebus necessariis vacui negotiis honeste ac liberaliter possimus vivere. Non ergo Epicurus
ineruditus, sed ii indocti, qui, quae pueros non didicisse turpe est, ea putant usque ad senectutem esse discenda.
Ratio quidem vestra sic cogit. Vos autem cum perspicuis dubia debeatis illustrare, dubiis perspicua conamini tollere.
Ego autem: Ne tu, inquam, Cato, ista exposuisti, ut tam multa memoriter, ut tam obscura, dilucide, itaque aut
omittamus contra omnino velle aliquid aut spatium sumamus ad cogitandum;
Tantus est igitur innatus in nobis cognitionis amor et scientiae, ut nemo dubitare possit quin ad eas res hominum natura
nullo emolumento invitata rapiatur. Itaque illa non dico me expetere, sed legere, nec optare, sed sumere, contraria
autem non fugere, sed quasi secernere. Vos autem cum perspicuis dubia debeatis illustrare, dubiis perspicua
conamini tollere. Quid enim mihi potest esse optatius quam cum Catone, omnium virtutum auctore, de virtutibus
disputare? In omni enim arte vel studio vel quavis scientia vel in ipsa virtute optimum quidque rarissimum est. Utrum
enim sit voluptas in iis rebus, quas primas secundum naturam esse diximus, necne sit ad id, quod agimus, nihil interest.
Haec non erant eius, qui innumerabilis mundos infinitasque regiones, quarum nulla esset ora, nulla extremitas, mente
peragravisset. Dabit hoc Zenoni Polemo, etiam magister eius et tota illa gens et reliqui, qui virtutem omnibus rebus
multo anteponentes adiungunt ei tamen aliquid summo in bono finiendo. Quae cum dixissem, magis ut illum
provocarem quam ut ipse loquerer, tum Triarius leniter arridens: Tu quidem, inquit, totum Epicurum paene e
philosophorum choro sustulisti. Videsne igitur Zenonem tuum cum Aristone verbis concinere, re dissidere, cum
Aristotele et illis re consentire, verbis discrepare? Quo minus animus a se ipse dissidens secumque discordans gustare
partem ullam liquidae voluptatis et liberae potest. Sit hoc ultimum bonorum, quod nunc a me defenditur; Quibus
rebus intellegitur nec timiditatem ignaviamque vituperari nec fortitudinem patientiamque laudari suo nomine, sed illas
reici, quia dolorem pariant, has optari, quia voluptatem. In homine autem summa omnis animi est et in animo rationis,
ex qua virtus est, quae rationis absolutio definitur, quam etiam atque etiam explicandam putant. Negat enim definiri
rem placere, sine quo fieri interdum non potest, ut inter eos, qui ambigunt, conveniat quid sit id, de quo agatur, velut
in hoc ipso, de quo nunc disputamus. A quibus propter discendi cupiditatem videmus ultimas terras esse peragratas.
Transfer idem ad modestiam vel temperantiam, quae est moderatio cupiditatum rationi oboediens.
Introduci enim virtus nullo modo potest, nisi omnia, quae leget quaeque reiciet, unam referentur ad summam. Ergo
ita: non posse honeste vivi, nisi honeste vivatur? Vives, inquit Aristo, magnifice atque praeclare, quod erit cumque
visum ages, numquam angere, numquam cupies, numquam timebis. Nam si +omnino nos+ neglegemus, in Aristonea
vitia incidemus et peccata obliviscemurque quae virtuti ipsi principia dederimus; Ut enim qui mortem in malis ponit
non potest eam non timere, sic nemo ulla in re potest id, quod malum esse decreverit, non curare idque contemnere.
Conveniret, pluribus praeterea conscripsisset qui esset optimus rei publicae status, hoc amplius Theophrastus: quae
essent in re publica rerum inclinationes et momenta temporum, quibus esset moderandum, utcumque res postularet.
Itaque multi, cum in potestate essent hostium aut tyrannorum, multi in custodia, multi in exillo dolorem suum doctrinae
studiis levaverunt. Et tamen vide, ne, si ego non intellegam quid Epicurus loquatur, cum Graece, ut videor, luculenter
sciam, sit aliqua culpa eius, qui ita loquatur, ut non intellegatur. Cum autem hominem in eo genere posuisset, ut ei
tribueret animi excellentiam, summum bonum id constituit, non ut excelleret animus, sed ut nihil esse praeter animum
videretur. Commoda autem et incommoda in eo genere sunt, quae praeposita et reiecta diximus;

Quis autem honesta in familia institutus et educatus ingenue non ipsa turpitudine, etiamsi eum laesura non sit,

offenditur? At modo dixeras nihil in istis rebus esse, quod interesset. Id et fieri posse et saepe esse factum et ad

voluptates percipiendas maxime pertinere. Societatem coniunctionis humanae munifice et aeque tuens iustitia

dicitur, cui sunt adiunctae pietas, bonitas, liberalitas, benignitas, comitas, quaeque sunt generis eiusdem. Illorum vero

ista ipsa quam exilia de virtutis vi! Quam tantam volunt esse, ut beatum per se efficere possit. Nam cum Academicis

incerta luctatio est, qui nihil affirmant et quasi desperata cognitione certi id sequi volunt, quodcumque veri simile

videatur. Est enim aliquid in his rebus probabile, et quidem ita, ut eius ratio reddi possit, ergo ut etiam probabiliter acti

ratio reddi possit. Ita fit illa conclusio non solum vera, sed ita perspicua, ut dialectici ne rationem quidem reddi putent

oportere: si illud, hoc; Cuius tanta tormenta sunt, ut in iis beata vita, si modo dolor summum malum est, esse non

possit. Itaque ut quisque optime natus institutusque est, esse omnino nolit in vita, si gerendis negotiis orbatus possit

paratissimis vesci voluptatibus. Ex quo magnitudo quoque animi existebat, qua facile posset repugnari obsistique

fortunae, quod maximae res essent in potestate sapientis. Ne vitationem quidem doloris ipsam per se quisquam in

rebus expetendis putavit, nisi etiam evitare posset. Sed qui ad voluptatem omnia referens vivit ut Gallonius, loquitur ut

Frugi ille Piso, non audio nec eum, quod sentiat, dicere existimo. Censemus autem facillime te id explanare posse,

quod et Staseam Neapolitanum multos annos habueris apud te et complures iam menses Athenis haec ipsa te ex

Antiocho videamus exquirere.
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Interactions with other fields
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Computability, definability, and combinatorics

“Recursion Theory: That part of mathematical logic
which is focused on definability, especially for subsets of
the natural numbers (ω) and of the real numbers (2ω).”

— Ted Slaman ∗

Post’s Thm. A ⊆ ω is Σ0
n+1 iff it is ∅(n)-c.e.

Low Basis Thm (Jockusch and Soare). Every nonempty Π0
1 subset

of 2ω has a low element.

C ⊆ 2ω is Π0
1 iff there is a computable binary tree whose infinite

paths are the elements of C.

∗ Recursion Theory, Gödel Lecture, ASL Annual Meeting, Philadelphia, PA, 2001
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PA degrees, cohesiveness, and the jump

WKL: Every infinite binary tree has an infinite path.

An oracle can find such paths for all computable trees iff it has
PA Turing degree.

An infinite set C is cohesive for R0,R1, . . . if ∀i (C ⊆∗ Ri ∨ C ⊆∗ Ri).

COH: Every sequence has a cohesive set.

Thm (Jockusch and Stephan). An oracle can find cohesive sets
for all uniformly computable sequences iff its jump has PA Turing
degree over 0′.
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Enumeration degrees

A is enumeration reducible to B, denoted by A 6e B, if there is an
enumeration operator W s.t. A = W B.

There is an embedding of the Turing degrees into the e-degrees,
induced by A 7→ A⊕ A.

An e-degree is total if it is in the image of this embedding.

Thm (Cai, Ganchev, Lempp, Miller, and Soskova). The total
e-degrees are definable in the e-degrees.
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Generic degrees

For a set S, let ρn(S) = S∩{0,1,...,n−1}
n .

The lower density ρ(S) of S is lim infn ρn(S).

A generic description of A is a partial function f s.t.
ρ(dom(f )) = 1 and f (n) = A(n) where defined.

A is (nonuniformly) generically reducible to B if for every generic
description g of B, there is a generic description f of A s.t.
graph(f ) 6e graph(g).

Open Questions. Are there minimal pairs in the generic degrees?
What about minimal degrees?

Igusa has significant partial results.
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Coarse computability bounds

A is coarsely computable at density r if there is a computable
set C such that ρ({n : C(n) = A(n)}) > r .

Let γ(A) = sup{r : A is coarsely computable at density r}.

For a Turing degree a, let Γ(a) = inf{γ(A) : A ∈ a}.

For a truth-table degree a, let Γtt(a) = inf{γ(A) : A ∈ a}.

If a is a hyperimmune Turing degree then Γ(a) = 0.

If a is the tt-degree of a (Martin-Löf) random set then Γtt(a) = 1
2 .

Thm (Monin). Γ(a) and Γtt(a) are always 0, 1
2 , or 1.
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Computability on a cone

Thm (Martin) [AD]. If C ⊆ 2ω is closed under ≡T then either C or C
contains a cone {X : A 6T X}.

Montalbán: Study relativizable properties on a cone.

The degree spectrum of a relation R on a structure A is
DgSpA(R) = {degT(RB) : B is a computable copy of A}.

Thm (Hirschfeldt). DgSpA(R) can be {0,c} for any c.e. c.

Thm (Harizanov). On a cone, DgSpA(R) = {0} or DgSpA(R) ⊇ Σ0
1.

Thm (Harrison-Trainor). On a cone, DgSpA(R) ⊆ ∆0
2 or

DgSpA(R) ⊇ 2-CEA.

Open Question. Can these results be extended beyond 2?
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A class K of structures satisfies hyperarithmetic-is-recursive if
every hyperarithmetic structure in K has a computable copy.

Thm (Spector). The class of well-orders satisfies
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Note that the class of well-orders is not axiomatizable, even by
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Thm (Montalbán) [PD]. T is a counterexample to Vaught’s
Conjecture iff the class of countable models of T is uncountable
(up to isomorphism) and satisfies hyperarithmetic-is-recursive on
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Effective Mathematics of the Uncountable

Approaches discussed in the book:

R-computability (Calvert and Porter)

Infinite time Turing machines (Coskey and Hamkins)

Admissible computability on ω1 (Greenberg and Knight)

Local computability (Miller)

Borel structures (Montalbán and Nies)

E-recursion (Sacks)

Reverse mathematics (Shore)

Σ-definability (Stukachev)



Generic Muchnik reducibility

C ⊆ 2ω is Muchnik (or weakly) reducible to D ⊆ 2ω, written C 6w D,
if every element of D computes an element of C.

For countable structures A and B, we write A 6w B if every copy
of B computes a copy of A.

Schweber extended this idea to possibly uncountable structures:

A is generically Muchnik reducible to B if for any generic
extension V [G] in which A and B are countable, V [G] � A 6w B.

Knight, Montalbán, and Schweber showed that it does not
matter if we take “any” to mean “there exists” or “for all”.
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Algorithmic randomness, analysis, and ergodic theory

Two recent meetings:

Computability, Analysis, and Geometry, Banff, 2015

Algorithmic Randomness Interacts with Analysis and
Ergodic Theory, Oaxaca, 2016

One theme: quantifying “almost all” results.

A monotonic f : [0, 1]→ R is differentiable almost everywhere.

Thm (Brattka, Miller, and Nies). x ∈ [0, 1) is computably random iff
every computable monotonic f : [0, 1]→ R is differentiable at x .
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Algorithmic randomness, analysis, and ergodic theory

A dynamical system consists of a probability space (Ω,B, µ) and
a function T : Ω→ Ω s.t. µ(T−1(B)) = µ(B) for all B ∈ B.

Thm (Birkhoff). If f : Ω→ R is L1 then

limn
1
n

n−1∑
i=0

f (T ix)

exists for almost all x .

We call such x weak Birkhoff for (Ω,B, µ, T ) and f .

Fix Ω = 2ω with the uniform measure µ.

Thm (V’yugin / Franklin and Towsner). A ∈ 2ω is Martin-Löf
random iff A is weak Birkhoff for all computable T and f .
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Algorithmic dimension and fractal geometry

dimH(C) is the Hausdorff dimension of C ⊆ Rn.

The effective Hausdorff dimension dim(x) of a point x can be
defined using Kolmogorov complexity.

Thm (Hitchcock). If C ⊆ Rn is a union of Π0
1 sets then

dimH(C) = supx∈C dim(x).

Thm (J. Lutz and N. Lutz). For all C ⊆ Rn, we have
dimH(C) = minA supx∈C dimA(x).

Thm (Kahane; Mattila). For all Borel C,D ⊆ Rn and almost all
z ∈ Rn, we have dimH(C ∩ (D + z)) 6max(0,dimH(C × D)− n}.

Thm (N. Lutz). This Intersection Formula holds for all C,D ⊆ Rn.
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Reverse mathematics

We work in a two-sorted 1st order language with number
variables, set variables, and symbols 0, 1, S, <,+, ·,∈.

A model in this language consists of a 1st order part
N = (N; 0N , 1N , SN , <N ,+, ·N) and a 2nd order part S ⊆ 2N .

If N is standard, we call this an ω-model and identify it with S.

The base theory RCA0 includes ∆0
1-comprehension and

Σ0
1-induction.

Thm (Friedman). An ω-model satisfies RCA0 iff it is a Turing ideal.
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Ramsey’s Theorem

[X ]n is the set of unordered n-tuples of elements of X .

A k-coloring of [X ]n is a map c : [X ]n → k .

A set H ⊆ X is homogeneous for c if |c([H]n)| = 1.

RTn
k : Every k-coloring of [N]n has an infinite homogeneous set.

RTn
k for n > 3 is at the level of arithmetic comprehension.

RT2
2 is more interesting.
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A coloring c : [N]2 → k is stable if limy c(x , y) exists for all x .

SRT2
2 is RT2

2 restricted to stable colorings.

SRT2
2 can be seen as RT1

2 relative to ∅′.

Thm (Cholak, Jockusch, and Slaman / Mileti / Jockusch and
Lempp). RCA0 ` RT2

2 ↔ (SRT2
2 + COH).

Thm (Cholak, Jockusch, and Slaman). RCA0 + COH 0 RT2
2.

Cholak, Jockusch, and Slaman asked: Does SRT2
2 imply RT2
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Equivalently, does SRT2
2 imply COH?
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Thm (Jockusch). There is a computable 2-coloring of pairs with
no ∆0

2 infinite homogeneous set.

Cor (Hirst). WKL0 0 RT2
2.

Thm (Liu). RCA0 + RT2
2 0 WKL0.

Thm (Downey, Hirschfeldt, Lempp, and Solomon). There is a
stable 2-coloring of pairs with no low infinite homogeneous set.

Thm (Chong, Slaman, and Yang). RCA0 + SRT2
2 0 RT2

2.

They build low infinite homogeneous sets for all stable 2-colorings
of pairs over a nonstandard first-order universe.

Open Question. Can this separation happen in ω-models?
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Π1
2 principles

Consider a principle

P ≡ ∀X [Θ(X) → ∃Y ∆(X ,Y )]

with Θ and ∆ arithmetic.

We think of P as a problem.

An instance of this problem is an X such that Θ(X) holds.

A solution to this instance is a Y such that ∆(X ,Y ) holds.



Computable reducibility

P is computably reducible to Q, written as P 6c Q, if

for every instance X of P,

there is an X -computable instance X̂ of Q s.t.,

for every solution Ŷ to X̂ ,

there is an X ⊕ Ŷ -computable solution to X .

X −→ X̂

↓

Y ←− Ŷ

The uniform version is Weihrauch reducibility, 6W.
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there is an X ⊕ Ŷ -computable solution to X .

X −→ X̂

↓

Y ←−

Ŷ
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Open Question. Is COH 6oc RT1
2?

Thm (Patey; Hirschfeldt and Jockusch). RT1
3 
soc RT1

2.



SRT2
2 and COH

Open Question. Is COH 6c SRT2
2?

Thm (Dzhafarov). COH 
W SRT2
2.

Computable reducibility

Omniscient computable reducibility

Strong omniscient computable reducibility

X

−→

X̂

↓

Y ←− Ŷ
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Hindman’s Theorem

HT: For every finite coloring of N, there is an infinite S ⊆ N s.t.
every sum of distinct elements of S has the same color.

Thm (Blass, Hirst, and Simpson). HT is provable in ACA+
0 and

implies ACA0.

Open Question. Does ACA0 ` HT?

HT6n Is HT for sums of at most n elements.

Open Question (Hindman, Leader, and Strauss). Is there a proof
of HT62 that is not a proof of HT?

Open Question. Does HT62 imply HT, say over RCA0?
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