
Modularity in Mathematics

Jeremy Avigad

Department of Philosophy and
Department of Mathematical Sciences

Carnegie Mellon University

May 2017

Overview

The term “modular” is a term of art in biology, computer science,
business administration, architecture, neuroscience, cognitive
science, philosophy of mind, . . .

Mathematical knowledge tends to be structured in modular ways.

The goal of this talk: to explore how, and why.

Overview

The thesis:

Mathematics (whatever that is) is modular (whatever that means),
and that is good (in some sense).

It will take some effort to make this more substantial.

Overview

• Mathematics from a design standpoint

• The concept of modularity

• Modularity in mathematics

• Examples from number theory

• Conclusions

Modularity in mathematics

Initial questions:

• What is mathematics? (At least, what is it that can bear the
predicate “modular”?)

• What are the goals of mathematics? (At least, what are the
sorts of reasons that could explain the value of modularity?)

Methodological stance: focus on mathematical language, and on
mathematical rules, norms, and values that can be described in
linguistic terms.

Mathematical knowledge

We can distinguish between two sorts of objects of knowledge (or
understanding):

• syntactic: definitions, theorems, proofs, theories, questions,
conjectures, . . .

• more nebulous: methods, concepts, heuristics, intuitions, . . .

I will focus mostly on modularity of syntactic entities.

I suspect that if we can make sense of the second group, we will
see that modularity of syntactic objects is just one aspect of
modularity of method.

Mathematical goals

Mathematics aims to get at the truth.

But we can’t check all natural numbers to see whether the
Goldbach conjecture is true: we are finitary agents.

More than that: we are cognitively bounded. We can only do so
much.

Mathematics aims to get us to the truth, efficiently.

For the time being, we’ll have to rely on intuitive notions of
complexity.

Philosophy of mathematics as a design science

Refined questions:

• What does it mean for definitions, theorems, proofs, theories,
and so on to be modular?

• How does modularity help us do mathematics more efficiently?

Mathematical artifacts are designed to serve our purposes, and can
do that poorly or well.

The philosophy of mathematics should tell us the principles that
ensure that our mathematical artifacts serve our purposes well.

Modular systems

Herbert Simon, “The Architecture of Complexity,” 1962, spoke of
“nearly decomposible” systems rather than modular ones.

Modularity has been studied with respect to:

• biology

• social organizations (like a business)

• hardware design

• software design

• architecture

• the mind

Modular systems

Roughly, a complex system is said to be modular to the extent it
has the following features:

• The system is divided into components, or modules, with
dependencies between them.

• The division supports abstraction: the function of the
components can be described with respect to the behavior of
the entire system, without reference to the particular
implementation.

• Dependencies between modules are kept small, and mediated
by precise specifications, or interfaces.

• Dependencies within a module may be complex, but, due to
encapsulation or information hiding, these are not visible
outside the module.

Modular systems

Modular systems can also be hierarchical.

This is not a necessary feature: one can have modular designs that
are essentially flat.

But a hierarchical design only makes sense in terms of a modular
presentation, and, conversely, the most modular description of a
system is often obtained by a hierarchical conception of its
components.

Modular systems

A modular design is often claimed to bring certain benefits:

• Comprehensibility: makes it easier to understand, explain, and
predict.

• Independence: allows the components of a system to be built
and tested independently.

• Reliability and robustness: makes it easier to find and correct
errors.

• Flexibility: makes it easier to change and adapt.

• Reuse: components that prove successful in one system can
be used in others.

These are features we want our mathematics to have.

Modular systems

Design Rules: Volume 1. The Power of Modularity by Baldwin and
Clark is about hardware design.

Modularity is characterized as “a particular design structure, in
which parameters and tasks are independent within units
(modules) and independent across them.”

The concept of modularity spans an important set of
principles in design theory: design rules, independent task
blocks, clean interfaces, nested hierarchies, and the
separation of hidden and visible information. Taken as a
whole, these principles provide the means for human
beings to divide up the knowledge and the specific tasks
involved in completing a complex design or constructing
a complex artifact.

Strategy

We would like to apply such notions to mathematical artifacts.

We will look to interactive theorem proving, which provides
semi-formal models of informal mathematics:

• The term “modular” is commonly used to describe software.

• Formal proof scripts are like computer code.

• Important features of informal mathematics are reflected in
the formal proof systems.

This approach does not make strong presuppositions about formal
vs. informal mathematics.

The formal models provide a useful means of analysis.

Modularity in computer science

Let’s first consider modularity in computer science.

Fortran (1950’s) and Basic (early 60’s) result in “spaghetti code.”

In the 1960’s, methodologies developed to support subroutines,
viewed as “modules.”

Interactions with other pieces of code were mediated by the
module’s interface.

Modularity in computer science

In 1970: Niklaus Wirth (designer of Pascal), in “Program
development by stepwise refinement” considered

the creative activity of programming . . . as a sequence of
design decisions concerning the decomposition of tasks
into subtasks and of data into data structures.

Modularity in computer science

1. Program construction consists of a sequence of
refinement steps. In each step a given task is broken
up into a number of subtasks. Each refinement in
the description of a task may be accompanied by a
refinement of the description of the data which
constitute the means of communication between the
subtasks. Refinement of the description of program
and data structures should proceed in parallel.

2. The degree of modularity obtained in this way will
determine the ease or difficulty with which a
program can be adapted to changes or extensions of
the purpose or changes in the environment
(language, computer) in which it is executed.

Modularity in computer science

In 1972, in “On the criteria to be used in decomposing systems
into modules,” David Parnas wrote:

The major advancement in the area of modular
programming has been the development of coding
techniques and assemblers which (1) allow one module to
be written with little knowledge of the code in another
module, and (2) allow modules to be reassembled and
replaced without reassembly of the whole system. This
facility is extremely valuable for the production of large
pieces of code. . .

Modularity in computer science

He promoted “information hiding”:

We propose . . . that one begins with a list of difficult
design decisions or design decision which are likely to
change. Each module is then designed to hide such a
decision from the others.

This is also known as “encapsulation.”

Modularity in computer science

The benefits expected of modular programming are: (1)
managerial—development time should be shortened
because separate groups would work on each module
with little need for communication; (2) product
flexibility–it should be possible to make drastic changes
to one module without a need to change others; (3)
comprehensibility—it should be possible to study the
system one module at a time. The whole system can
therefore be better designed because it is better
understood.

Modularity in computer science

Summarizing:

• Large programs should be divided into independent modules.

• A module is a body of code with a well-defined interface. The
interface specifies what procedures the user can call from the
outside, what data these procedures expect, what data these
procedures return, what state information the module keeps
track of, and how procedural calls change the state.

• The internal workings of the code can otherwise largely be
ignored; in particular, code that interacts through the interface
is guaranteed to work even if the implementation changes.

Characterizing modularity

Some examples of code (in a made-up language):

struct point := {xval : float, yval : float}

const pi : float := 3.1415

function gcd (x y : nat) : nat :=

if y = 0 then x else gcd y (x mod y)

function circle_area (r : float) : float :=

pi * r^2

function distance (a b : point) : float :=

sqrt ((a.xval - b.xval)^2 + (a.yval - b.yval)^2)

A definition associates an identifier (the definiendum) to an
expression (the definiens).

Characterizing modularity

A bare-bones notion of syntactic dependence: one definition
depends on another if the definiens of the first mentions the
definiundum of the second.

Derivative dependences:

• syntactic well-formedness.

• semantics

• semantic properties

Characterizing modularity

What are the interfaces?

Various possibilities:

• the type

• the denotation (e.g. “what function it computes”)

• specific properties of the denotation

What is encapsulated is what is left out of the interface.

From programs to proofs

Modularity is not limited to programming languages. In
mathematics the proof of a theorem is decomposed into a
collection of definitions and lemmas. Cross-references among
lemmas determine a dependency struture that constrains their
integration to form a complete proof of the main theorem. Of
course, one person’s theorem is another person’s lemma; there is
no intrinsic limit on the depth and complexity of the hierarchies of
results in mathematics. Mathematical structures are themselves
composed of separable parts, as, for example, a Lie group is a
group structure on a manifold.

Robert Harper, Practical Foundations for Programming Languages

Interactive theorem proving

“Formal methods” refer to the use of formal, logic-based methods
in computer science.

“Formal verification” can mean:

• verifying the correctness of hardware or software with respect
to a specification

• verifying the correctnectness of a mathematical proof

“Interactive theorem proving” means working with a proof
assistant to construct a formal axiomatic proof.

These are natural outgrowths of twentieth century foundational
research.

Interactive theorem proving

Some theorems formalized to date:

• the prime number theorem

• the four-color theorem

• the Jordan curve theorem

• Gödel’s first and second incompleteness theorems

• Dirichlet’s theorem on primes in an arithmetic progression

• The Cartan fixed-point theorems

• The central limit theorem

There are good libraries for elementary number theory, real and
complex analysis, point-set topology, measure-theoretic probability,
abstract algebra, Galois theory, . . .

Interactive theorem proving

Some landmarks:

In 2012, Georges Gonthier and coworkers completed a verification
of Feit-Thompson Odd Order Theorem in Coq.

In 2014, Thomas Hales and coworkers completed a verification of
the Kepler conjecture (the Flyspeck project).

From programs to proofs

The analogy between programs and proofs is made explicit in
interactive theorem proving, where proofs are “code.”

The Feit-Thompson theorem was part of the Mathematical
Components project:

The object of this project is to demonstrate that
formalized mathematical theories can, like modern
software, be built out of components. By components we
mean modules that comprise both the static (objects and
facts) and dynamic (proof and computation methods)
contents of theories.

From programs to proofs

From the final writeup:

. . . the success of such a large-scale formalization demands a
careful choice of representations that are left implicit in the paper
description. Taking advantage of Coq’s type mechanisms and
computational behavior allows us to organize the code in
successive layers and interfaces. The lower-level libraries implement
constructions of basic objects, constrained by the specifics of the
constructive framework. Presented with these interfaces, the users
of the higher-level libraries can then ignore these constructions. . .

From programs to proofs

A crucial ingredient [in the success of the project] was the transfer
of the methodology of “generic programming” to formal
proofs. . . [T]he most time-consuming part of the project involved
getting the base and intermediate libraries right. This required
systematic consolidation phases performed after the production of
new material. The corpus of mathematical theories preliminary to
the actual proof of the Odd Order theorem represents the main
reusable part of this work, and contributes to almost 80 percent of
the total length. Of course, the success of such a large
formalization, involving several people at different locations,
required a very strict discipline, with uniform naming conventions,
synchronization of parallel developments, refactoring, and
benchmarking. . .

From programs to proofs

The dialectic:

• The language of a proof assistant models informal
mathematics.

• Text in such a language is a form of code.

• We know (more or less) how to talk about modularity in code.

• So it makes sense to talk about modularity in formal libraries.

• Insofar as these model informal mathematics, we can speak of
modularity in mathematics.

Towards a formal model

In a conventional programming language, we have:

• data type specifications (nat, float, point,
float → float)

• functions and data (pi, circle_area)

Proof assistants provide means to describe all the following:

• data type specifications

• mathematical objects of these types

• propositions

• proofs of these propositions

This list is not meant to be exhaustive.

Towards a formal model

def binary_relation (α : Type) : Type := α → α → Prop

def transitive {α : Type} (r : binary_relation α) : Prop :=

∀ {x y z}, r x y → r y z → r x z

def binary_relation_inverse {α : Type} (r : binary_relation α) :

binary_relation α :=

λ x y, r y x

theorem transitive_binary_relation_inverse {α : Type}

{r : binary_relation α} :

transitive r → transitive (binary_relation_inverse r) :=

assume h : transitive r,

take x y z,

assume h1 : binary_relation_inverse r x y,

assume h2 : binary_relation_inverse r y z,

show binary_relation_inverse r x z,

from h h2 h1

Towards a formal model

An expression of one kind can depend on entities of other kinds:

• the definition of a mathematical object can depend on other
objects and data types

• a proof can depend on data types, objects, propositions, and
other proofs

• the definition of an object can depend on a proposition
(e.g. if even x then 0 else 1)

• the definition of an object can depend on a proof (e.g. defining
gcd x y as the greatest common divisor of x and y)

Towards a formal model

What are the interfaces?

• types

• algebraic structures (e.g. instantiating the reals as an ordered
ring)

• theory files, namespaces, module systems, . . .

Measures of complexity

Modularity is supposed to make code easier to understand, easier
to develop and maintain, and easier to extend, and to increase the
likelihood that the code can be reused in other contexts.

We would like to make the case that maintaining modular
mathematical theories has the same benefits.

This presupposes some conception of what it means to be easier to
understand, maintain, or extend a theory.

Measures of complexity

We would like to consider the benefits of modularity with respect
to mathematical proofs.

Two possible measures:

• how hard it is to find, or discover, a mathematical proof

• how hard it is to read and understand a proof

Let’s focus on the latter. Even that is no small task.

Measures of complexity

Reading a proof is a complex task: we need to

• keep track of the objects and facts that are introduced,

• muster relevant background knowledge, and

• fill in nontrivial reasoning steps that are nonetheless deemed
to be straightforward.

How does a modular structuring of the proof and the background
theory help?

Measures of complexity

Modular structuring decreases the cognitive burden:

• Type interfaces makes it possible for us to infer the types of
objects and expressions in front of us.

• Types and algebraic structures make it easier to apply
theorems and constructions.

• Types, algebraic structures, and modular structuring of
theories makes it easier to find and retrieve relevant facts
from our background knowledge.

• Encapsulation keeps information overload at bay.

This is the beginning of an answer. We need more substantive
theories of how this works.

Examples

I have made the case that modularity should be valued in
mathematics.

In fact, modularity is everywhere:

• Books are divided into chapters.

• Proofs are broken down to lemmas.

• Subjects and bodies of knowledge are broken down into
smaller disciplines.

Concrete examples will help us think about how the notions play
out.

Congruence

Definition. If x and y are integers, say x divides y , written x | y , if
there is an integer z such that y = xz .

Definition. If m is another integer, say x is congruent to y modulo
m, written x ≡ y (mod m), if m | x − y .

Let us consider a toy, but illustrative, example:

Proposition. If x ≡ y (mod m), then x3 + 3x + 7 ≡ y3 + 3y + 7
(mod m).

Congruence

Proof. Unpacking definitions, we have x ≡ y (mod m) if and only
if x = y + mz for some z . Then

x3 + 3x + 7 = (y + mz)3 + 3(y + mz) + 7

= y3 + 3y2mz + 3ym2z2 + m3z3 + 3y + 3mz + 7

= y3 + 3y + 7 + m(3y2z + 3ymz2 + m2z3 + 3z)

which shows that x3 + 3x + 7 ≡ y3 + 3y + 7 (mod m). �

Of course, this doesn’t scale.

More significantly, it breaks abstraction.

Congruence

Proposition. Let x , y , and z be integers.

1. x | x .

2. If x | y and y | z then x | z
3. If x | y and x | z , then x | y + z .

4. If x | y , then x | zy .

5. x | 0.

Proof. For 1, we have x = x · 1. For 2, if y = xu and z = yv , then
z = x(uv). For 3, if y = xu and z = xv , then y + z = x(u + v).
For 4, if y = xu, then zy = x(zu). For 5, take y = x and z = 0 in
3. �

This is the only place where we need to unfold the definition of |.

Congruence

Proposition.

1. ≡ is an equivalence relation.

2. If x ≡ y (mod m), then x + z ≡ y + z (mod m)

3. If x1 ≡ y1 (mod m) and x2 ≡ y2 (mod m) then
x1 + x2 ≡ y1 + y2 (mod m).

4. If x ≡ y (mod m), then xz ≡ yz (mod m).

5. If x1 ≡ y1 (mod m) and x2 ≡ y2 (mod m) then x1x2 ≡ y1y2
(mod m).

6. If x ≡ y (mod m), then xn ≡ yn (mod m) for every natural
number n.

It follows that if p(x) is any polynomial with integer coefficients
and x ≡ y (mod m), then p(x) ≡ p(y) (mod m).

Congruence

In the refactored version:

• the existential quantifier in “divides” encapsulates data.

• the proofs about congruence respect that interface.

Benefits of the refactoring:

• The proof is easier to understand.

• The properties of divisibility and congruence are reusable.

• The result is more general.

Think about what is encapsulated with limx→a f (x) = b.

Fermat’s Little Theorem

Theorem. Let p be any prime number, and suppose p - a. Then
ap−1 ≡ 1 (mod p).

Euler published a proof in 1761.

First, he shows that for any a and p - a, there is a least λ > 0 such
that aλ ≡ 1 (mod p).

He also showed that the residues of {1, a, a2, . . . , aλ−1} are
distinct.

We would say that the nonzero residues modulo p form a group
under multiplication modulo p.

Fermat’s Little Theorem

Theorem. If the number of different residues resulting from the division
of the powers 1, a, a2, a3, a4, a5, etc., by the prime number p is smaller
than p − 1, then there will be at least as many numbers that are
nonresidues as there are residues.

Proof. Let a be the lowest power which, when divided by p, has the
residue 1, and let λ < p − 1; then the number of different residues will be
= λ and therefore smaller than p − 1. And since the number of all
numbers smaller than p is = p − 1, there obviously must in our case be
numbers that do not appear in the residues. I claim that there are at
least λ of them. To prove it, let us express the residues by the terms
themselves that produce them, and we get the residues

1, a, a2, a3, . . . , aλ−1,

whose number is λ and, reducing them in the usual way, they all become
smaller than p and are all different from each other. As λ is supposed to
be < p − 1, there exists certainly a number not occurring among those
residues. Let this number be k ; now I say that, if k is not a residue, then

Fermat’s Little Theorem

ak and a2k and a3k etc. as well as aλ−1k do not appear among the
residues. Indeed, suppose that aµk is a residue resulting from the power
aµ; then we would have aα = np + aµk or aα − aµk = np and then
aα − aµk = aµ(aα−µ − k) would be divisible by p. Now aµ is not
divisible by p, so aα−µ would, if divided by p, give the residue k contrary
to the assumption. From this it follows that all the numbers
k , ak, a2k, . . . , aλ−1k or numbers derived from them are nonresidues.
Moreover, they are all different from each other and their number is = λ;
for if two of them, say aµk and aνk , divided by p were to give the same
residue r , then aµk = mp + r and aνk = np + r and thus
aµk − aνk = (m − n)p, or (aµ − aν)k = (m − n)p would be divisible by
p. Now k is not divisible by p, since we have assumed that p is a prime
number and k < p; then aµ − aν would have to be divisible by p; or aµ−ν

would give, divided by p, the residue 1, which is impossible because
µ < λ− 1 and ν < λ− 1; also µ− ν < λ. Therefore all the numbers
k , ak, a2k, . . . , aλ−1k , if reduced, will be different and their number is
= λ. Thus there exist at least λ numbers not belonging to the residues
so long as λ < p − 1.

Fermat’s Little Theorem

The rest of the proof runs three times as long as the excerpt.

What does a modern proof look like?

Fermat’s Little Theorem

Let G be the group of nonzero residues modulo p.

Let H = {1, a, a2, a3, . . . , aλ−1} be the subgroup generated by a.

If k is any element of G , let Hk denote the coset {hk | h ∈ H}.

Proposition. For any k, r ∈ G , if k 6∈ Hr , then Hk ∩ Hr = ∅.

Proof. If h1k = h2r , then k = h−11 h2r ∈ Hr . �

Proposition. For any k in G , |Hk | = |H|.

Proof. h 7→ hk is a bijection from H to Hk ; h1k = h2k, then
h1 = h2. �

Fermat’s Little Theorem

Proposition. |H| divides |G |.

Let g1 = 1. If H = Hg1 6= G , pick an element g2 in G but not
Hg1. If Hg1 ∪ Hg2 6= G , pick an element g3 in G but not Hg1 or
Hg2, and so on. Since G is finite, eventually we obtain

G = Hg1 ∪ Hg2 ∪ Hg3 ∪ . . . ∪ Hgn

The sets Hg1,Hg2, . . . ,Hgn are disjoint and each has cardinality
|H|, so |G | = |H| · n. �

The theorem now follows: since |G | = p − 1 and |H| = λ,
assuming |G | = |H| · n we have

ap−1 ≡ aλn ≡ (aλ)n ≡ 1n ≡ 1 (mod p).

Fermat’s Little Theorem

Why is Euler’s proof so much longer?

Part of it stylistic: he makes little effort to be concise.

We also help ourselves to set-theoretic terminology, with the coset
definition and the notion of a bijection.

But the main thing is the Euler doesn’t use our abstraction: once
we know that the residues form a group, we never have unfold the
“definition” of multiplication.

Fermat’s Little Theorem

The proof, in fact, establishes Lagrange’s theorem: if H is a
subgroup of a finite group G , |H| divides |G |.

As a corollary, we get Euler’s theorem: if a and m are coprime,
aϕ(m) ≡ 1 (mod m).

Benefits of the refactored version:

• the proof is easier to check and understand

• we get much stronger generalizations

Other examples

Nineteenth century number theory provides nice examples:

• problems are usually easy to state

• they often require serious machinery

• results are reworked and generalized dramatically

Good case studies:

• quadratic reciprocity

• binary quadratic forms

• Dirichlet’s theorem

• the prime number theorem

Conclusions

It is generally undertood that modularity brings benefits to
software design:

• understandability

• reliability and robustness

• independence

• flexibility and adaptability

• generalizability and reuse

Our goal has been to transfer that to mathematics.

Conclusions

The dialectic:

• Formal mathematics, as developed in interactive theorem
provers, is like computer code.

• Relevant features of informal mathematics are captured in
these formal languages.

There is a lot we need to do to flesh out the model:

• Pay careful attention to the data — the historical and
contemporary record of mathematics — and study it in terms
of these notions.

• Develop better conceptual and logical models, with more
precise ways of analyzing the structure of mathematical
artifacts and assessing their epistemic value.

Conclusions

This type of analysis is likely to inform other topics of interest in
the philosophy of mathematics (and philosophy in general):

• representation

• abstraction

• naturality

• generality

• explanation

• purity

