
Craig Interpolation Theorems and
Database Applications

Balder ten Cate!
LogicBlox & UC Santa Cruz!

!
!

November 7, 2014, UC Berkeley - Logic Colloquium!
!

1

Craig Interpolation

• William Craig (1957): For all first-order formulas φ, ψ,
if φ ⊨ ψ, then there is a first-order formula χ with
Voc(χ) ⊆ Voc(φ)∩Voc(ψ) and φ ⊨ χ ⊨ ψ.
Moreover the formula χ in question can effectively
constructed from a proof of φ ⊨ ψ. !

• Various extensions and variations (e.g., Lyndon
interpolation, many-sorted interpolation, Otto
interpolation). !

• Van Benthem (2008): “Craig’s Theorem is about the last
significant property of first-order logic that has come to light.”

2

Outline

1. An interpolation theorem for FO formulas with relational access restrictions!

2. Effective interpolation for the guarded negation fragment of FO

3

Relational Access Restrictions

• A database is a (finite) relational structure over some schema S = {R1, …, Rn}!

• Relational access restrictions: restrictions on the way we can access the
relations R1, …, Rn.

4

First Example: View-Based Query Reformulation

• Road network database: Road(x,y)!

• Views: !

- V2(x,y) = “∃ path of length 2 from x to y” = ∃u Road(x,u) ∧ Road(u,y)!

- V3(x,y) = “∃ path of length 3 from x to y” = ∃u,v Road(x,u) ∧ Road(u,v) ∧ Road(v,y)!

- …!

• Observation: V4 can be expressed in terms of V2.!

• Puzzle (Afrati’07): can V5 be expressed (in FO logic) in terms of V3 and V4?

5

Solution to the puzzle

V5(x,y) ⇔ ∃u (V4(x,u) ∧ ∀v (V3(v,u) → V4(v,y)))!

!

Proof:!

[⟹]!

!

!

[⟸]

6

x y
uv

x y
u

Why this Example is Important

• A conjunctive query (CQ) is a FO formula built up using only ∧, ∃.!

- Conjunctive queries are the most common type of database queries.!

- Every positive-existential FO formula is equivalent to a union of CQs.!

!

• Remarkable fact:!

- V3, V4 and V5 are all defined by CQs over the base relation (Road). !

- V5 is definable in terms of V3 and V4 but not by means of a CQ.

7

Classic Results

Querying using views has been around since the 1980s. E.g.,!

• Theorem (Levy Mendelzon Sagiv Srivastava ’95): there is an effective
procedure to decide whether a conjunctive query is rewritable as a
conjunctive query over a given set of conjunctive views.!

• Open problem (Nash, Segoufin, Vianu ‘10): is there an effective
procedure to decide if a conjunctive query is answerable on the basis of
a set of conjunctive views (a.k.a., is determined by the views)? if so, in
what language can we express the rewriting?!

NB: The Beth definability theorem (1953) tell us that, if a FO query is
answerable on the basis of a set of FO views, then, it has a FO rewriting.

8

Access Restrictions

• View-Based Query Reformulation:!

- Can I reformulate Q as a query using only V1, …, Vn ?!

- In other words, is Q equivalent to a query that only uses the symbols V1, …, Vn
(relative to the theory consisting of the view definitions)?!

• Query Reformulation w.r.t. Access Methods (more refined):!

- Can I find a plan to evaluate Q using only allowed access methods (possibly
relative to some theory)?!

- First theory work by Chang and Li ’01, followed by work of Nash,
Ludaescher, Deutsch, …

9

Access Methods

• Access method: a pair (R,X) where R is an n-ary relation and X⊆{1, …, n} is
a set of “input positions”!

- Relation R can be accessed if specific values are provided for the positions in X.!

• Examples: !

- (Yellowpages(name,city,address,phone#), {1,2})!

- (R,∅) means free (unrestricted) access to R.!

- (R,{1, …, n}) means only membership tests for specific tuples.!

• There may be any number of access methods for a given relation. The
allowed access methods for a relation can be assumed to be an upwards
closed set.

10

Access Methods “Used” by a Formula

BindPatt(φ) is the set of access methods “used” by φ.

11

• For example BindPatt(∀y(Rxy → Sxy)) = { (R,{1}), (S,{1,2}) }!

• A FO formula φ is executable if BindPatt(φ) consists of allowed access methods.!

• Fact: Each executable FO formula admits a query plan, and, conversely, every
formula that admits a query plan is equivalent to an executable FO formula.!

• Query plan = sequence of allowed accesses and/or relational algebra operations.

Motivation

• Query Reformulation w.r.t. Access Methods (again):!

-Can I find a plan to evaluate Q using only allowed access methods (possibly
relative to some theory)?!

• Example: In the road network example, V5(x,y) admits a first-order plan
using only the access methods (V2,∅) and (V3,{1,2}).!

• Motivation:!

-Answering queries using data behind webforms.!

- Query optimization (if a relation R(x,y) is stored in order sorted on x, access
method (R,{2}) is much more costly than access method (R,{1}).)!

- …

12

• View-Based Query Reformulation:!

- Can I reformulate Q as a query using only the views V1, …, Vn ?!

• Query Reformulation w.r.t. Access Methods (more refined):!

- Can I find a plan to evaluate Q using only allowed access methods (possibly
relative to some theory)?!

!

- Enter Craig interpolation

13

View-Based Query Reformulation:
Key concepts

• Determinacy: V4 is determined by (or answerable from) V2.!

- Whenever two structures, satisfying the view-definition theory, assign the same
denotation to V2, then they also assign the same denotation to V4.!

• Query reformulations: V4 can be reformulated as a query over V2 in FO!

- There is a FO formula that uses only V2 and that is equivalent to V4 (relative to the
view definition theory).

14

V4 is
implicitly defined in

terms of V2

?xy.V2(x,y)
⊨

?xy.V4(x,y)
E.W.Beth

J. Groenendijk !
and M. Stokhof

View-Based Query Reformulation

• Given:!

- Base relations R1… Rn, !

- View names V1…Vm!

- View definition theory: T = { ∀x(V1(x) ↔ ψ1(x)), … } !

- Query Q over the base relations!

!

• The following are equivalent:!

1. Q is determined by V1…Vm (w.r.t. the theory T).!

2. a certain FO implication θT,Q is valid !

3. Q can be reformulated as a FO query over V1…Vm. In fact, every Craig
interpolant of θT,Q is such a reformulation.

15

What is going on?

• From a proof of determinacy we are obtaining an actual reformulation.!

• This way of using interpolation to get explicit definitions from implicit ones
goes right back to Craig’s work.!

• Same technique works for arbitrary theories T (not only view definitions).!

• In principle this gives a method for finding query reformulations (but FO
theorem proving is difficult).

16

• Can we do the same for the case with access methods?!

• Answer: yes, using a suitable generalization of Craig interpolation.

17

Access Interpolation

• Access interpolation theorem (Benedikt, tC, Tsamoura, 2014): for all FO
formulas φ, ψ, if φ ⊨ ψ, then there is a FO formula χ with BindPatt(χ) ⊆
BindPatt(φ) ∩ BindPatt(ψ) and φ ⊨ χ ⊨ ψ. Moreover the formula χ in question
can effectively constructed from a proof of φ ⊨ ψ (in a suitable proof system).!

• Can be further refined by distinguishing positive/negative uses of binding
patterns.!

• Generalizes many existing interpolation theorems (Lyndon, many-sorted
interpolation, Otto interpolation).!

• Gives rise to a way of testing “access-determinacy” and the existence of
reformulations w.r.t. given access methods, as well as a method for finding
such reformulations.

18

Mathematical Logic

• In set theory, a ∆0-formula is a formula that only uses access method (∈, {2})!

• In bounded arithmetic, we study formulas that only use access method (≤, {2}).!

• The access interpolation theorem generalizes an interpolation theorem for
“≤-persistent” formulas by Feferman (1967).!

• Closely related: an interpolation theorem for the bounded fragment
(equivalently, hybrid logic) by Areces, Blackburn and Marx (2001).

19

Summary

Querying under Access Restrictions!

1. View-based query reformulation (simply restricting to a subset of the signature)!

This is the setting of the (projective) Beth theorem. We look for a proof of
implicit definability (“determinacy”) and, from it, compute an explicit
definition (“query reformulation”) using Craig interpolation.!

2. Query reformulations given access methods (more refined)!

Same general technique applies, using a suitable adaptation of Craig
interpolation: access interpolation.

20

Three Important Subtleties

1. Databases are finite structures. But Craig interpolation for first-order logic
fails in the finite (and so does access interpolation).!

2. For practical applications, we need effective algorithms. But first-order logic
is undecidable (we cannot effectively decide if the implication θT,Q is valid).!

3. For practical applications, we don’t want just any query reformulation, we
want one of low cost.

21

Solutions

• The solution for 1 and 2 is to move to a fragment of first-order logic that
is (a) decidable and that has (b) the finite model property, and (c) Craig
interpolation, while still being sufficiently expressive. !

- the guarded-negation fragment.!

!

• The solution for 3 is to take into account a cost function.

22

Cost-sensitive Query Reformulation

• Every database management system has a cost-estimate function for
query plans (expected execution time).!

• We are looking for a proof of θT,Q such that the interpolant obtained from
it constitutes a plan that has a low cost.!

• Strategy: explore the space of possible proofs guided by a (monotone) plan
cost function. !

• Ongoing research (Michael Benedikt and others at Oxford, using the
LogicBlox data management system). !

- cf. also [Benedikt, Leblay, Tsamoura PVLDB, 2014]

23

• Part 2: Guarded negation!

based on joint work with Luc Segoufin, Vince Barany and Martin Otto, Michael
Benedikt, Michael vanden Boom (STACS 11, ICALP 11, VLDB 2012, MFCS 2013,
LICS 2014)

24

Theme

• Theme: decidable fragments by restricting the use of negation.!

- Unary negation: allow only ¬φ(x) [tC & Segoufin STACS 11]!

- Guarded negation: allow also G(x) ∧ ¬φ(x) [Barany, tC & Segoufin ICALP 11]!

!

• Orthogonal to previous ways of “taming” FO:!

- We make no restriction on the number of variables!

- We make no restriction on quantifier alternation. !

- We allow unguarded quantification.

25

Modal logic

• (Basic) modal logic: a small fragment of FO!

- Signature: {R, P1, ..., Pn}!

- Formulas: φ(x) := Pi(x) | φ(x) ∧ ψ(x) | ¬φ(x) | ∃y(Rxy ∧ φ(y))!

• Very well behaved (decidable for satisfiability, has Craig interpolation, ..) !

- many extensions, such as the modal mu-calculus, are decidable too.!

• “Why is modal logic so robustly decidable?” (Vardi ’96)!

- tree model property, !

- translation into MSO (tree automata),!

- finite model property.

26

shorthand: ◇φ

Why Modal Logic is so Robustly Decidable

• “Syntactic explanations”:!

- Modal formulas only need two variables (FO2) [Graedel-Kolaitis-Vardi 1997]!

- Modal formulas only use guarded quantification patterns (GFO) [Andreka-van
Benthem-Nemeti 1998, Graedel 1999]!

- Modal formulas only use unary negation (UNFO) [tC-Segoufin 2011]

27

FO

ML

FO2
GF

UNFO

Guarded Fragment

!

• All quantification must be guarded.!

φ ::= R(x1…xn) | x=y | ¬φ | φ ∧ φ | ∃y.G(x,y,z) ∧ φ(x,y)!

• GF has become an extremely successful and well studied fragment of FO.!

• Inherits all the good properties of modal logic (robust decidability, finite model
property, …)!

• Except Craig interpolation (cf. Hoogland and Marx 2002).

28

(Andreka, van Benthem, Nemeti 1998)

Unary Negation

• Unary Negation FO (UNFO):!

- φ ::= R(x) | x = y | φ ∧ φ | φ ∨ φ | ∃xφ | ¬φ(x)!

- Only allow negation of formulas in one free variable.!

- NB. The universal quantifier is treated as a defined connective.!

• Fixed-Point Extension (UNFP):!

- φ ::= ... | [LFPZ,z φ(Z,Y,z)](x) (where Z occurs only positively in φ)!

• UNFO and UNFP generalizes many existing logics:!

- Modal logic, modal mu-calculus, various description logics,!

- Unions of conjunctive queries, monadic Datalog,!

- CTL*(X), Core XPath

29

UNFO and UNFP

• Good model theory:!

- UNFO & UNFP have the tree-like model property (bounded tree-width)!

- UNFO has the finite model property!

- UNFO has Craig interpolation!

- UNFO can be characterized in terms of UN-bisimulation invariance.!

• Decidable for satisfiability!

- 2ExpTime-complete, both on arbitrary structures and in the finite
(via [Bojanczyk ’02])!

• Model checking:!

- UNFO model checking: PNP[log2] - complete (via [Schnoebelen ’03])!

- UNFP model checking: in NPNP ∩ coNPNP and PNP-hard.

30

Unary Negation vs Guardedness

• What do unary negation fragments have that guarded fragments don’t?!

- Unrestricted existential quantification is allowed. Can express arbitrary
Unions of Conjunctive Queries and monadic Datalog programs.!

- UNFO has Craig interpolation (which fails for GFO)!

• A common generalization: guarded negation [Barany-tC-Segoufin ’11].!

- All results for unary negation have been lifted to guarded negation.

31

FO

ML

FO2
GF

UNFO

GNFO

Guarded Negation

• Guarded Fragment (GFO):!

- φ ::= R(x) | x = y | φ∨φ | φ∧φ | ¬φ | ∃x G(xyz) ∧ φ(xy) | ∃x φ(x)!

- Unrestricted use of negation; restricted use of quantification.!

• Guarded Negation FO (GNFO):!

- φ ::= R(x) | x=y | ∃xφ | φ∨φ | φ∧φ | ¬φ(x) | G(xy)∧¬φ(x)!

- Restricted use of negation; unrestricted use of existential quantification.!

• Fixed-point Extension (GNFP):!

- φ ::= ... | μZ,z[guardedσ(z) ∧ φ(Y,Z, z)](x) (where Z occurs only positively in φ)!

- (greatest fixed points can be expressed as dual)!

• Fact: Every GFO / GFP sentence is equivalent to a GNFO / GNFP sentence.

32

()

Normal form

• GN-Normal form for GNFO formulas:!

- φ ::= R(x) | x=y | ∃xφ | φ∨φ | φ∧φ | ¬φ(x) | G(xy)∧¬φ(x)!

- I.e., φ is built up from atoms using (i) UCQs, and (ii) guarded negation.!

• GN-Normal form for GNFP formulas:!

- φ ::= R(x) | x=y | q[φ1/U1, ..., φn/Un] | ¬φ(x) | G(xy)∧¬φ(x) !

 | μZ,z[guardedσ (z) ∧ φ(Y,Z, z)](x)!

- I.e., φ is built up from atoms using (i) UCQs, (ii) guarded negation, and (iii) guarded
LFPs.!

• Fact: Every GNFO / GNFP formula is equivalent to one in GN-normal form. !

- GFO / GFP: as above, but only allow acyclic conjunctive queries.

33

q[φ1/U1, ..., φn/Un] !
(where q is a UCQ containing relations U1, ..., Un)

GN-Bisimulation Game

• The GN-bisimulation game:!

- Positions: pairs of guarded sets (a,b)!

- Moves: !

• Spoiler picks a finite set X in one of the structures.!

• Duplicator responds with a partial homomorphism h from X to the other
structure, s.t. h(a)=b.!

• Spoiler picks guarded subsets (c,d) in h.

34

hom

hom?

Querying the Guarded Fragment

• Barany-Gottlob-Otto LICS 2010 (“Querying the guarded fragment”):!

- The following is 2ExpTime-complete and finitely controllable:!

 Given a GFO-sentence φ and a (Boolean) UCQ q, test if φ ⊨ q.!

• GNFO is a common generalization of GFO and UCQs. !

- The above question is equivalent to the (un)satisfiability of φ ∧ ¬q.!

- Conversely, GNFO satisfiability reduces to querying the guarded fragment.!

• Replace all UCQs in the formula by fresh predicates, and “axiomatize” them
(a la Scott normal form) using GFO sentences and negated CQs.!

- We show GNFP satisfiability is 2ExpTime-complete using the techniques from
[Barany-Gottlob-Otto 2010] as well as [Barany-Bojanczyk 2011].

35

Decidability of GNFP Satisfiability

• Thm: (Finite) satisfiability of GNFP is 2ExpTime complete.!

• Main ingredients of the proof:!

- Treeifications of cyclic conjunctive queries, !

- Rosati covers ([Barany-Gottlob-Otto 2010])!

- A reduction from GNFP to GFP.

36

Treeification

• Treeification: !

- If q is a CQ and τ is a schema, Λτq is the union of all minimal acyclic CQs over
τ that imply q.

37

R R

S

S

A (cyclic) CQ

- The treeification Λτq can be expressed in GFO, and it “approximates” q:!

• By definition, Λτq implies q. Over tree-like structures, q and Λτq are equivalent.

R R
S

S

R R
S

S

R R

S

S

T

Its treeification

v v

Proof sketch

• Theorem. (Finite) satisfiability for GNFP reduces to (finite) satisfiability for GFP. !

• Proof sketch:!

- Let φ be a GNFP sentence in GN-normal form.!

- Introduce a fresh relation symbol T of sufficiently large arity!

- Let η(φ) be the GFP formula obtained by replacing all CQs in φ by their τ ∪ {T}-
treeification.!

- Every model of φ has an expansion satisfying φ’ (interpret T as the total relation, and
use the fact that τ-treeification includes the trivial T expansion).!

- Conversely, if M ⊨ φ’, then the (infinite) guarded unraveling M* ⊨ φ’ . Since M* is tree-
like, we have that M* |= φ.!

- In the finite case, instead of M* we use a Rosati-cover (a finite approximation of M*).

38

Summary

• Guarded negation logic: !

- Common generalization of guarded fragment and conjunctive queries.!

- Decidable (even when extended with fixed point operators).!

!

• Satisfies the combination of properties that we were looking for:!

- Craig interpolation, decidable satisfiability problem, finite model property.!

!

• Corollary: if a GNFO query is determined, given a collection of view
definitions specified in GNFO, then there is a GNFO rewriting. Moreover,
this holds also over finite structures, and is effective.

39

