# Conversational dynamics: technical notes

Daniel Rothschild Logic Colloquium, Berkeley, 10/5/12

daniel.rothschild@philosophy.ox.ac.uk

Seth Yalcin yalcin@berkeley.edu

[The material below is from our paper 'On the dynamics of conversation'.]

#### Conversation systems 1

**Def 1.** A CONVERSATION SYSTEM is a triple  $(L, C, [\cdot])$ , where L is a set of sentences, C is a set of informational contexts, and  $[\cdot]$  is an update function from L to a set of context-change potentials (unary operations) on  $C^{1}$ 

**Def 2.** A PROPOSITION MAP is a triple  $\langle L, P, \llbracket \cdot \rrbracket \rangle$ , where L is a set of sentences, P is a set of propositions, and  $\llbracket \cdot \rrbracket$  is a mapping with  $\llbracket \cdot \rrbracket : L \to P$ .

**Def 3.** A conversation system  $\langle L, C, [\cdot] \rangle$  is INCREMENTAL if and only if there exists a proposition map  $\langle L, P, \llbracket \cdot \rrbracket \rangle$  and a one-to-one function f from C to  $\mathcal{P}(P)$  such that for all  $c \in C$  and  $s \in L$ ,  $f(c) \cup \{ [\![s]\!] \} = f(c[s]\!)$ .

**Def 4.** A conversation system  $(L, C, [\cdot])$  is STATIC if and only if there exists a set of sets P, a proposition map  $\langle L, P, \llbracket \cdot \rrbracket \rangle$ , and a one-to-one function f from C to P such that for all  $c \in C$  and  $s \in L$ ,  $f(c) \cap [\![s]\!] = f(c[s]\!]$ .

#### van Benthem staticness 2

**Def 5.** A conversation system  $\langle L, B, [\cdot] \rangle$  is VAN BENTHEM STATIC iff there exists a Boolean algebra<sup>2</sup>  $B_A$ ,  $B_A = \langle B, \wedge, \vee, \neg, \top, \bot \rangle$ , such that for all  $c \in B$  and  $s \in L$ ,

Eliminativity.  $c[s] \lor c = c$ 

Finite distributivity.  $(c \lor c')[s] = c[s] \lor c'[s]$ 

Call any such triple  $\langle L, B_A, [\cdot] \rangle$  a van Benthem static conversation system WITH BOOLEAN STRUCTURE.

**Fact 1** (van Benthem 1986). If  $\langle L, B_A, [\cdot] \rangle$  is a van Benthem static conversation system with Boolean structure, where  $B_A = \langle B, \wedge, \vee, \neg, \top, \bot \rangle$ , then for all  $c \in B$  and  $s \in L$ :  $c[s] = c \land \top [s]$ .

Proof. 
$$c \wedge \top[s] = c \wedge (c \vee \neg c)[s]$$
  
 $= c \wedge (c[s] \vee \neg c[s])$  (Finite distributivity)  
 $= (c \wedge c[s]) \vee (c \wedge \neg c[s])$   
 $= c[s] \vee \emptyset$  (Eliminativity)  
 $= c[s]$ 

Fact 2. If a conversation system is van Benthem static, it is static.

#### Veltman staticness 3

**Def 6.** A quadruple  $\langle V, \top, \wedge, < \rangle$  is an INFORMATION LATTICE iff V is a set,  $\top \in V$ ,  $\wedge$  is a binary operation on V, and  $\leq$  is a partial order on V such that for all  $c, c' \in V$ :

$$\begin{array}{l} \top \wedge c = c \\ c \wedge c = c \\ c \wedge c' = c' \wedge c \\ (c \wedge c') \wedge c'' = c \wedge (c' \wedge c'') \\ c < c' \text{ iff there is some } c'' \text{ such that } c \wedge c'' = c'.^{3} \end{array}$$

**Def 7.** A conversation system  $\langle L, V, [\cdot] \rangle$  is VELTMAN STATIC iff there exists an information lattice,  $V_I, V_I = \langle V, \top, \wedge, \leq \rangle$ , such that for all  $c, c' \in V$  and  $s \in L$ ,

**Idempotence.** c[s][s] = c[s]**Persistence.** If c[s] = c and  $c \le c'$  then c'[s] = c'Strengthening.  $c \leq c[s]$ **Monotony.** If  $c \leq c'$  then  $c[s] \leq c'[s]$ 

<sup>&</sup>lt;sup>1</sup>Conversation system=deterministic labelled state transition system.

<sup>&</sup>lt;sup>2</sup>A BOOLEAN ALGEBRA is a tuple  $(B, \land, \lor, \neg, \top, \bot)$ , where B is a set,  $\land, \lor$  are binary operations on  $B, \neg$  is a unary operation on B, and  $\top, \bot \in$ B, such that: for any  $x, y \in B$ : (1)  $x \lor (x \land y) = x$ ; (2)  $x \land (x \lor y) = x$ ; (3)  $x \lor \neg x = \top;$  (4)  $x \land \neg x = \bot.$ 

<sup>&</sup>lt;sup>3</sup>The specification of  $\leq$  adds no structure as it is induced by  $\wedge$ , but we will find the explicit specification convenient below. An intuitive gloss on  $c \leq c'$  would be "c' is at least as informationally strong as c".

Call any such triple  $\langle L, V_I, [\cdot] \rangle$  a Veltman static update system WITH INFORMATION STRUCTURE.

**Fact 3** (Veltman 1996). If  $\langle L, V_I, [\cdot] \rangle$  is Veltman static conversation system with information structure, where  $V = \langle V, \top, \wedge, \leq \rangle$ , then for all  $c \in V$  and  $s \in L$ :  $c[s] = c \wedge \top [s]$ .

$$\begin{array}{ll} Proof. \ c \leq c \land \top [s] \\ c[s] \leq (c \land \top [s])[s] & (Monotony) \\ c[s] \leq c \land \top [s] & (Idempotence, Persistence) \end{array}$$
For the other direction:
$$\begin{array}{c} \top \leq c[s] \\ \top [s] \leq c[s] & (Idempotence, Monotony) \\ c \land \top [s] \leq c[s] \land c \\ c \land \top [s] \leq c[s] & (Strengthening) \\ c \land \top [s] = c[s] \end{array}$$

Fact 4. If a conversation system is Veltman static, it is static.



Figure 1: A Veltman static conversation system that is not van Benthem static. The information lattice is  $\langle V = \{\emptyset, \{0\}, \{0, 1\}\}, \top = \{0, 1\}, \cap, \supseteq \rangle$ . The conversation system is  $\langle \{a, b\}, V, [\cdot] \rangle$ , where for all  $c \in V$ ,  $c[a] = c \cap \{1\}$  and  $c[b] = \emptyset$ .



Figure 2: A static conversation system that is not Veltman static.

### 4 Staticness characterized

**Fact 5** (Static representation theorem). A conversation system  $\langle L, C, [\cdot] \rangle$  is static iff for all  $s, s' \in L$  and  $c \in C$ ,

Idempotence. c[s][s] = c[s]Commutativity. c[s][s'] = c[s'][s]

We begin with the right-to-left direction.

Fact 5.1 If a conversation system is idempotent and commutative, then it is static.

*Proof.* Let  $\langle L, C, [\cdot] \rangle$  be an idempotent and commutative conversation system. To show that the system is static, it will suffice to show that there exists a proposition map  $\langle L, \mathcal{P}(C), \llbracket \cdot \rrbracket \rangle$  and an injective function  $f: C \to \mathcal{P}(C)$  such that  $f(c[s]) = f(c) \cap \llbracket s \rrbracket$ , for all  $s \in L$  and  $c \in C$ .

In order to define f and  $\llbracket \cdot \rrbracket$ , we first define a relation  $\leq_U$  between contexts in an arbitrary conversation system U, as follows:

**Def 8.** For any conversation system U, and  $c, c' \in C_U$ ,  $c \leq_U c'$  iff there exist  $s_1 \ldots s_n \in L_U$  such that  $c[s_1] \ldots [s_n] = c'$ , or c = c'. (We will just write  $\leq$  if the conversation system being discussed is clear from context.)

We will find the following abbreviation useful: since  $[\cdot]$  is commutative, we can speak of the update of a set of sentences on a context irrespective of their sequential order:

**Def 9.** If S is a finite set of sentences  $s_1....s_n$  from  $L, c[S] =_{\text{DEF}} c[s_1]....[s_n]$ 

We pause to observe that relative to any commutative idemopotent conversation system,  $\leq$  is transitive, reflexive and anti-symmetric. Reflexivity is trivial. Transitivity: suppose  $c_1 \leq c_2$  and  $c_2 \leq c_3$ . Then for some S, S',  $c_1[S] = c_2$  and  $c_1[S'] = c_3$ ; hence  $c_1[S][S'] = c_3$ , so  $c_1 \leq c_3$ . Antisymmetry: suppose  $c_1 \leq c_2$  and  $c_2 \leq c_1$ . Then for some  $S, S', c_1[S] = c_2$  and  $c_2[S'] = c_1$ , and hence  $c_1[S][S'] = c_1$ . By commutativity it follows that  $c_1[S'][S] = c_1$ , and hence  $c_1[S'][S][S] = c_1[S]$ . By idempotence  $c_1[S'][S] = c_1[S'][S]$ , so substituting,  $c_1[S'][S] = c_1[S]$ ; substituting again,  $c_1 = c_2$ .

Define  $f: C \to \mathcal{P}(C)$  as follows:  $f(c) =_{\text{DEF}} \{c' \in C : c \leq c'\}$ . We observe f is an injection (i.e., if  $f(c_1) = f(c_2)$  then  $c_1 = c_2$ , for all  $c_1, c_2 \in C$ .)

Suppose  $f(c_1) = f(c_2)$ . Now  $f(c_1) = \{c' \in C : c_1 \leq c'\}$ , hence by reflexivity  $c_1 \in f(c_1)$ . Hence  $c_1 \in f(c_2)$ ; hence  $c_1 \in \{c' \in C : c_2 \leq c'\}$  and therefore  $c_2 \leq c_1$ . By parity,  $c_2 \in f(c_1)$ , and  $c_1 \leq c_2$ . By anti-symmetry,  $c_1 = c_2$ .

Now define  $\llbracket \cdot \rrbracket : L \to \mathcal{P}(C)$  to be the minimum function such that  $\llbracket s \rrbracket = \{c \in C : c[s] = c\}$ . (Thus  $\llbracket \cdot \rrbracket$  takes s to its fixed points on the update function  $[\cdot]$ .)

The preceding defines (i) a proposition map  $\langle L, \mathcal{P}(C), \llbracket \cdot \rrbracket \rangle$  given an arbitrary commutative idempotent conversation system  $\langle L, C, \llbracket \cdot \rrbracket \rangle$ , and (ii) a injective function f from  $C \to \mathcal{P}(C)$ . It remains to show that for all  $c \in C$  and  $s \in L$ ,  $f(c[s]) = f(c) \cap \llbracket s \rrbracket$ .

First we show that if  $c_1 \in f(c[s])$ , then  $c_1 \in f(c) \cap \llbracket s \rrbracket$ . Suppose  $c_1 \in f(c[s])$ . (i) Then  $c_1 \in \{c' \in C : c[s] \leq c'\}$ . So  $c[s] \leq c_1$ . By definition  $c \leq c[s]$ . So  $c \leq c[s] \leq c_1$ . Hence by transitivity  $c \leq c_1$ , hence  $c_1 \in f(c)$ . (ii) Now since  $c[s] \leq c_1$ , there exists some S such that  $c[s][S] = c_1$ . So  $c[s][S][s] = c_1[s]$ . By commutativity, c[s][S][s] = c[S][s][s], which by idempotence equals c[S][s], which by commutivity equals c[s][S]. So c[s][S][s] = c[s][S]. Here we substitute  $c_1$  for c[s][S], and we have  $c_1[s] = c_1$ . From this it follows that  $c_1 \in \llbracket s \rrbracket$ , since the latter just is  $\{c \in C : c[s] = c\}$ . So from (i) and (ii) we have  $c_1 \in f(c) \cap \llbracket s \rrbracket$ , the desired result.

Now let us show that if  $c_1 \in f(c) \cap [\![s]\!]$ , then  $c_1 \in f(c[s])$ . This is equivalent to showing that if  $c_1[s] = c_1$  and  $c \leq c_1$ , then  $c[s] \leq c_1$ . Suppose  $c \leq c_1$ . Then there is some S such that  $c[S] = c_1$ . Suppose also  $c_1[s] = c_1$ . Then we have  $c[S] = c_1[s] = c_1$ . Therefore  $c[S][s] = c_1$ . By commutativity  $c[s][S] = c_1$ . And that means  $c[s] \leq c_1$ ; and therefore  $c_1 \in f(c[s])$ .

The left-right direction completes the proof:

Fact 5.2 If a conversation system is static, then it is commutative and idempotent.

*Proof.* Any static system is idempotent and commutative, since intersection is idempotent and commutative.  $\Box$ 

## 5 Commutativity

- (1) a. Harry is married. Harry's spouse is a great cook.b. ?Harry's spouse is a great cook. Harry is married.
- (3) a. Billy might be at the door.... Billy is not at the door.b. ?Billy is not at the door... Billy might be at the door.



Figure 3: Merely reversing the order of sentences in natural language conversation does not result in commutation.

### 6 Information-sensitivity characterized

**Def 10.** An INFORMATION-RELATIVE PROPOSITION MAP is a quadruple  $\langle L, C, P, \llbracket \cdot \rrbracket \rangle$ , where *L* is a set of sentences, *C* is a set of contexts, *P* is a set of propositions, and  $\llbracket \cdot \rrbracket$  is a mapping with  $\llbracket \cdot \rrbracket : L \times C \to P$ .

**Def 11.** A conversation system  $\langle L, C, [\cdot] \rangle$  is INFORMATION-SENSITIVE if and only if there exists a set of sets P, an information-sensitive proposition map  $\langle L, C, P, \llbracket \cdot \rrbracket \rangle$ , and a one-to-one function f from C to P such that for all  $c \in C$  and  $s \in L$ ,  $f(c) \cap \llbracket s \rrbracket^c = f(c[s])$ . **Def 12.** A conversation system  $\langle L, C, [\cdot] \rangle$  is MONOTONIC just in case for all  $s_i \in L$  and  $c \in C$ , if  $c[s_i] \neq c$ , then for all ordered sequences  $s_1...s_n$  of elements of L,  $c[s_i][s_1]...[s_n] \neq c$ .<sup>4</sup>

Then the observation is this:

Fact 6. A conversation system is information-sensitive just in case it is monotonic.

*Proof.* Recall the definition of  $\leq_U$  in the proof of Fact 5 above:

**Def 8.** For any conversation system U, and  $c, c' \in C_U$ ,  $c \leq_U c'$  iff there exist  $s_1 \ldots s_n \in L_U$  such that  $c[s_1] \ldots [s_n] = c'$ , or c = c'.

Observe that a conversation system  $U = \langle L, C, [\cdot] \rangle$  is monotonic just in case  $\leq_U$  is a partial order. Thus it suffices to show that U is informationsensitive iff  $\leq_U$  is a partial order. We first show that if U is informationsensitive, the corresponding  $\leq$  is a partial order. Reflexivity and transitivity are immediate consequences of the definition of  $\leq$ . For anti-symmetry simply note that for c, d in  $C' \ c \leq d$  only if  $c \supseteq d$ . It follows that if  $c \leq d$ and  $d \leq c, c = d$ .

We now show that if  $\leq$  is a partial order, then U is information-sensitive. Let  $f: C \to \mathcal{P}(C)$  be such that  $f(c): \{c': c \leq c'\}$ . Note that f is injective, as we showed in our proof of Fact 5 using only the fact that  $\leq$  is a partial order. Now consider the information-relative proposition map  $\langle L, C, \mathcal{P}(C), \llbracket \cdot \rrbracket \rangle$  where  $\llbracket s \rrbracket$  is the minimal mapping such that for all  $c \in C$  and  $s \in L$ ,  $\llbracket s \rrbracket^c = f(c[s])$ . It remains to establish that for all  $c \in C$  and  $s \in L$ ,  $f(c) \cap \llbracket s \rrbracket^c = f(c[S])$ . First, we show that  $\llbracket s \rrbracket^c \subseteq f(c)$ . Note that  $\llbracket s \rrbracket^c = f(c[s])$  and  $c \leq c[s]$ . Now, suppose  $c' \in f(c[s])$ , then, by definition,  $c[s] \leq c'$ . So, by transitivity of  $\leq, c \leq c'$ , and thus  $c' \in f(c)$ . So  $\llbracket s \rrbracket^c \subseteq f(c)$ . It follows immediately that:  $f(c) \cap \llbracket s \rrbracket^c = \llbracket c[s]$ .

Appendix

Fact 7. If a conversation system is incremental, then it is static.

*Proof.* Suppose  $\langle L, C, [\cdot] \rangle$  is an incremental conversation system. Then there exists a proposition map  $\langle L, P, \llbracket \cdot \rrbracket \rangle$  and a one-to-one function f from C to  $\mathcal{P}(P)$  such that for all  $c \in C$  and  $s \in L$ ,  $f(c) \cup \{\llbracket s \rrbracket\} = f(c[s])$ . Consider the proposition map  $\langle L, \mathcal{P}(P), \llbracket \cdot \rrbracket' \rangle$  such that  $\llbracket s \rrbracket' = P \setminus \{\llbracket s \rrbracket\}$  $= \{\llbracket s \rrbracket\}^c$ , and consider the function  $f' : C \to \mathcal{P}(P)$  such that  $f'(c) = f(c)^c$ . Then for all  $c \in C$  and  $s \in L$ :

$$f(c) \cup \{ [\![s]\!] \} = f(c[s])$$
  
$$(f(c) \cup \{ [\![s]\!] \})^c = f(c[s])^c$$
  
$$f(c)^c \cap \{ [\![s]\!] \}^c = f(c[s])^c$$
  
$$f'(c) \cap [\![s]\!]' = f'(c[s])$$

Fact 8. Not every intersective system is incremental.

*Proof.* Consider an intersective conversation system  $\langle L, C, [\cdot] \rangle$  such that:

(i) 
$$c_1[p \land q][p] = c_1[p \land q]$$
  
(ii)  $c_1[p \land q] \neq c_1[p] \neq c_1$ .

Suppose the system is incremental. Then there exists some proposition map  $\langle L, P, \llbracket \cdot \rrbracket \rangle$  and a one-to-one function f from C to  $\mathcal{P}(P)$  such that for all  $c \in C$  and  $s \in L$ ,  $f(c) \cup \{\llbracket s \rrbracket\} = f(c[s])$ . Given such a map, we know

$$f(c_1[p \land q][p]) = f(c_1) \cup \{ [\![p \land q]\!] \} \cup \{ [\![p]\!] \}$$

Since by (i) we have  $c_1[p \wedge q][p] = c_1[p \wedge q]$ , it follows that

$$f(c_1) \cup \{ [\![p \land q]\!] \} \cup \{ [\![p]\!] \} = f(c_1) \cup \{ [\![p \land q]\!] \}$$

This entails that either  $\llbracket p \rrbracket \in f(c_1)$  or  $\llbracket p \rrbracket \in \{\llbracket p \land q \rrbracket\}$  (n.b.,  $\{\llbracket p \rrbracket\}$  is a singleton). Suppose the former. Then  $f(c_1) \cup \{\llbracket p \rrbracket\} = f(c_1) = f(c_1[p])$ ; but since f is one-one, this result is incompatible with (ii), which says  $c_1[p] \neq c_1$ . So suppose instead  $\llbracket p \rrbracket \in \{\llbracket p \land q \rrbracket\}$ . But this entails  $\llbracket p \rrbracket = \llbracket p \land q \rrbracket$ , meaning  $f(c_1[p \land q]) = f(c_1[p])$ . Since f is one-one, this result is incompatible with (ii), which says  $c_1[p] \neq c_1$ .

<sup>&</sup>lt;sup>4</sup>Don't confuse this notion with the notion of monotony used to define the Veltman static systems in §5 above. The latter applies only in the context of information lattices.