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Logical 0-1 laws

Fix a finite first-order language L. For each n suppose K (n) is a set of
L-structures with universe [n] = {1, . . . ,n}. Set K =

⋃
n∈N K (n).

Definition
We say K has a 0-1 law if for every L-sentence φ,

µ(φ) = lim
n→∞

|{G ∈ K (n) : G |= φ}|
|K (n)|

is either 0 or 1.

The almost sure theory of K is Tas(K ) = {φ ∈ L : µ(φ) = 1}.

If K has a 0-1 law, then Tas(K ) is complete.
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Discrete Metric Spaces

This is joint work with D. Mubayi.

Definition
Let r ≥ 2 be an integer.

1 Mr (n) is the set of metric spaces with underlying set [n] and
distances all in [r ].

2 Lr = {d1, . . . ,dr} where each di is a binary relation symbol.

Every G ∈ Mr (n) is naturally an Lr -structure:
for all a,b ∈ G, interpret

G |= di(a,b)⇔ d(a,b) = i in G.

Question
Does Mr :=

⋃
n∈N Mr (n) have a 0-1 law?

Caroline Terry (University of Maryland) Hereditary L-properties March 10, 2017 3 / 22



Answer for r even
Assume r ≥ 2 is even. We now define a special subfamily of Mr (n).

Definition
Let Cr (n) = {G ∈ Mr (n) : for all a 6= b ∈ [n],d(a,b) ∈ { r

2 , . . . r}}.

Theorem (Mubayi, T.)

lim
n→∞

|Cr (n)|
|Mr (n)|

= 1.

Let Cr =
⋃

n∈N Cr (n). A standard argument shows Cr has a 0-1 law.

Corollary (Mubayi, T.)
Mr has a 0-1 law and Tas(Mr ) = Tas(Cr ).

Idea: Precise structure theorem + 0-1 law for Cr ⇒ new 0-1 law for Mr .
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How do we prove the precise structure theorem?

Key tool: approximate structure and enumeration.

Definition
Given δ > 0 and two elements G,G′ ∈ Mr (n), we say G and G′ are
δ-close if

∣∣∣{ab ∈
([n]

2

)
: dG(a,b) 6= dG′

(a,b)
}∣∣∣ ≤ δ(n

2

)
.

Let Cδ
r (n) = {G ∈ Mr (n) : G is δ-close to an element of Cr (n)}.

Theorem (Mubayi, T.)
Structure: for all δ > 0, there is β > 0 such that for large n,

|Mr (n) \ Cδ
r (n)|

|Mr (n)|
≤ 2−β(n

2).

Enumeration: |Mr (n)| = |Cr (n)|(1 + 2o(n2)) = ( r
2 + 1)(n

2)+o(n2).
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Outline of 0-1 law

Approximate Structure and Enumeration + Ad-hoc arguments

⇓

Exact Structure and Enumeration (Cr (n) takes over)

+

0-1 law for less complicated family (Cr (n))

⇓

0-1 law for complicated family (Mr (n))

Examples where one can apply this strategy:
1 K`-free graphs (Kolaitis-Prömel-Rothschild)

2 Tk -free digraphs (Kühn-Osthus-Townsend-Zhao) + (Koponen)

3 Triangle-free 3-uniform hypergraphs (Balogh-Mubayi) + (Koponen)

4 Discrete metric spaces (Mubayi-T.)
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Focus on Approximate Structure and Enumeration

Approximate structure and enumeration results .

are important tools in proofs of certain 0-1 laws.

are of independent interest in extremal combinatorics.

have been proven for lots of combinatorial objects (e.g. graphs,
digraphs, hypergraphs, colored hypergraphs, metric spaces).

often have similar proofs using combination of:

1 extremal results
2 supersaturation results
3 stability theorems
4 graph removal lemmas
5 regularity lemmas
6 hypergraph containers theorem (Balogh-Morris-Samotij,

Saxton-Thomason).
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Question

Question
Is there a way to view these results (and their proofs) as examples of a
general theorem (and its proof)?

Today: yes.
Main Ingredients:

Hypergraph containers theorem (Balogh-Morris-Samotij,
Saxton-Thomason).

Triangle Removal for L-structures (Aroskar-Cummings).

Many combinatorics papers which have made the pattern of proof
clear. Particularly recent work using the hypergraph containers
theorem.

Remark: similar results were obtained independently by Falgas-Ravry,
O’Connell, and Uzzell.
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Hereditary L-properties

Let L be a finite relational language and H a class of finite
L-structures. H has the hereditary property if A ∈ H and B ⊆L A
implies B ∈ H.

Definition
H is a hereditary L-property if it has the hereditary property and is
closed under isomorphism.

In the appropriate language, most of the results we want to generalize
are for hereditary L-properties.

Enumeration and structure of hereditary properties in the setting of
graphs and other combinatorial structures have been studied in
combinatorics.

Caroline Terry (University of Maryland) Hereditary L-properties March 10, 2017 9 / 22



Setup

For the rest of the talk,

L is a fixed, finite relational language.
r is the maximum arity of the relation symbols in L.
Assume H is a hereditary L-property.
For each n, Hn is the set of elements in H with domain [n].
For all n, Hn 6= ∅.

Questions
1 |Hn| = ??
2 What is the approximate structure of

⋃
n∈NHn?
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LH-structures

Definition
Sr (H) is the set of complete, quantifier-free L-types p(x1, . . . , xr ) s.t.
for each i 6= j , xi 6= xj ∈ p(x̄) and p(x̄) is realized in some element of H.

Definition
LH = {Rp(x1, . . . , xr ) : p(x1, . . . , xr ) ∈ Sr (H)}.

Notation: V ` = {(a1, . . . ,a`) ∈ V ` : ai 6= aj each i 6= j}.

Definition
Let V be a set. An LH-structure M with domain V is an LH-template if

For all ā ∈ V r , there is Rp(x̄) ∈ LH such that M |= Rp(ā).
For all p,q ∈ Sr (H), if p(x1, . . . , xr ) = q(xµ(1), . . . , xµ(r)) for some
permutation µ of [r ], then for all (a1, . . . ,ar ) ∈ V r ,

M |= Rp(a1, . . . ,ar ) if and only if M |= Rq(aµ(1), . . . ,aµ(r)).
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Example

L = {E(x , y)} and H is the class of all finite triangle-free graphs.

p(x , y) = the complete q.f. type containing E(x , y) ∧ E(y , x) ∧ x 6= y .

q(x , y) = the complete q.f. type containing ¬E(x , y)∧¬E(y , x)∧x 6= y .

Then Sr (H) = {p(x , y),q(x , y)} and LH = {Rp(x , y),Rq(x , y)}.

Draw Example.
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Subpatterns

Suppose M is an LH-template with domain V .

Definition
An L-structure N is a full subpattern of M if dom(N) = V and for all
{a1, . . . ,ar} ∈

(V
r

)
,

if p(x1, . . . , xr ) = qftpN(a1, . . . ,ar ) then M |= Rp(a1, . . . ,ar ).

In this case, write N Ep M.

Observe any L-structure N with domain V is determined by
qftpN(a1, . . . ,ar ) for all {a1, . . . ,ar} ∈

(V
r

)
.

Example.
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Extremal Structures

Definition
An LH-template M is called H-random if N Ep M implies N ∈ H.

R([n],H) is the set of H-random LH-templates with domain [n].

sub(M) = |{N : N Ep M}|.

ex(n,H) = max{sub(M) : M ∈ R([n],H)}.

Definition
M ∈ R([n],H) is extremal if sub(M) = ex(n,H).

Observation: |Hn| ≥ ex(n,H).

Rex([n],H) is the set of extremal M in R([n],H).
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Results: Enumeration

Recall ex(n,H) = max{sub(M) : M ∈ R([n],H)}.

The asymptotic density of H is π(H) := limn→∞ ex(n,H)1/(n
r).

Theorem (T.)
For all hereditary L-properties H, π(H) exists.

Theorem (T.)
If H is a hereditary L-property, then the following hold.

1 If π(H) > 1, then |Hn| = π(H)(n
r)+o(nr ).

2 If π(H) ≤ 1, then |Hn| = 2o(nr ).
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Distance Between First-Order Structures

Definition
Suppose L0 is a finite relational language with maximum arity r . If M
and N are finite L0-structures with domain V . Set

dist(M,N) =
|{A ∈

(V
r

)
: qftpM(A) 6= qftpN(A)}|(|V |

r

) .

We say M and N are δ-close if dist(M,N) ≤ δ.

This is basically the same as a definition of Aroskar-Cummings.
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Stability and Structure

Definition
H has a stability theorem if for all δ > 0 there is ε > 0 such that for
sufficiently large n the following holds. For all M ∈ R([n],H)

sub(M) ≥ ex(n,H)1−ε ⇒ M is δ-close to an element of Rex ([n],H).

Let E(n,H) = {G ∈ Hn : G Ep M, some M ∈ Rex([n],H)}.
Let Eδ(n,H) = {G ∈ Hn : G is δ-close to some G′ ∈ E(n,H)}.

Theorem (T.)
Suppose π(H) > 1 and H has a stability theorem. Then for all δ > 0,
there is a β > 0 such that for sufficiently large n,

|Hn \ Eδ(n,H)|
|Hn|

≤ 2−β(n
r).
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Back to Metric Spaces

Given r ≥ 2, let L = {d1, . . . ,dr}, and letMr be the hereditary
L-property obtained by closing

⋃
n∈N Mr (n) under isomorphism.

Fact
If r is even then the following hold.

E(n,Mr ) = Cr (n), so for all δ > 0, Eδ(n,Mr ) = Cδ
r (n).

π(Mr ) = ( r
2 + 1).

Consequently, our general counting theorem implies the following.

Theorem

When r ≥ 2 is even, |Mr (n)| = π(Mr )(n
2)+o(n2) = ( r

2 + 1)(n
2)+o(n2).
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Back to Metric Spaces

Fact
If r ≥ 2 is even thenMr has a stability theorem.

Consequently, our general structure theorem implies the following.

Theorem
Let r ≥ 2 be even. For all δ > 0, there is β > 0 such that for large n,

|(Mr )n \ Eδ(n,Mr )|
|(Mr )n|

=
|Mr (n) \ Cδ

r (n)|
|Mr (n)|

≤ 2−β(n
2).
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Back to Metric Spaces
Recall that when r is even,

⋃
n∈N Mr (n) has a 0-1 law (Mubayi-T.).

Conjecture (Mubayi-T.)
When r is odd,

⋃
n∈N Mr (n) does not have a 0-1 law.

Question: What is the difference between the even and odd cases?

Theorem (Mubayi-T., T.)
When r ≥ 2 is even,Mr has a stability theorem. When r is odd,Mr
does not have a stability theorem.
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A Conjecture

This naturally leads to the following conjecture.

Assume L is a finite relational language.

Definition
Suppose H is a collection of finite L-structures such that Hn 6= ∅ for
each n. Then H has a 0-1 law if

⋃
n∈NHn has a 0-1 law.

Conjecture (T.)
If H is a hereditary L-property with π(H) > 1 and a 0-1 law, then H
has a stability theorem.
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