Structure and enumeration theorems for hereditary properties in finite relational languages

Caroline Terry

University of Maryland, College Park

Berkeley Logic Colloquium

Logical 0-1 laws

Fix a finite first-order language \mathcal{L} . For each n suppose K(n) is a set of \mathcal{L} -structures with universe $[n] = \{1, \dots, n\}$. Set $K = \bigcup_{n \in \mathbb{N}} K(n)$.

Definition

We say K has a 0-1 law if for every \mathcal{L} -sentence ϕ ,

$$\mu(\phi) = \lim_{n \to \infty} \frac{|\{G \in K(n) : G \models \phi\}|}{|K(n)|}$$

is either 0 or 1.

The almost sure theory of K is $T_{as}(K) = \{ \phi \in \mathcal{L} : \mu(\phi) = 1 \}$.

If K has a 0-1 law, then $T_{as}(K)$ is complete.

Discrete Metric Spaces

This is joint work with D. Mubayi.

Definition

Let $r \ge 2$ be an integer.

- $M_r(n)$ is the set of metric spaces with underlying set [n] and distances all in [r].
- ② $\mathcal{L}_r = \{d_1, \dots, d_r\}$ where each d_i is a binary relation symbol.

Every $G \in M_r(n)$ is naturally an \mathcal{L}_r -structure: for all $a, b \in G$, interpret

$$G \models d_i(a,b) \Leftrightarrow d(a,b) = i \text{ in } G.$$

Question

Does $M_r := \bigcup_{n \in \mathbb{N}} M_r(n)$ have a 0-1 law?

Answer for *r* even

Assume $r \ge 2$ **is even**. We now define a special subfamily of $M_r(n)$.

Definition

Let $C_r(n)=\{G\in M_r(n): \text{for all } a\neq b\in [n], d(a,b)\in \{\frac{r}{2},\dots r\}\}.$

Theorem (Mubayi, T.)

$$\lim_{n\to\infty}\frac{|C_r(n)|}{|M_r(n)|}=1.$$

Let $C_r = \bigcup_{n \in \mathbb{N}} C_r(n)$. A standard argument shows C_r has a 0-1 law.

Corollary (Mubayi, T.)

 M_r has a 0-1 law and $T_{as}(M_r) = T_{as}(C_r)$.

Idea: Precise structure theorem + 0-1 law for $C_r \Rightarrow$ new 0-1 law for M_r .

How do we prove the precise structure theorem?

Key tool: approximate structure and enumeration.

Definition

Given $\delta > 0$ and two elements $G, G' \in M_r(n)$, we say G and G' are δ -close if $\left|\left\{ab \in {[n]\choose 2}: d^G(a,b) \neq d^{G'}(a,b)\right\}\right| \leq \delta {n\choose 2}$.

Let $C_r^{\delta}(n) = \{G \in M_r(n) : G \text{ is } \delta\text{-close to an element of } C_r(n)\}.$

Theorem (Mubayi, T.)

Structure: for all $\delta > 0$, there is $\beta > 0$ such that for large n,

$$\frac{|M_r(n)\setminus C_r^{\delta}(n)|}{|M_r(n)|}\leq 2^{-\beta\binom{n}{2}}.$$

Enumeration: $|M_r(n)| = |C_r(n)|(1 + 2^{o(n^2)}) = (\frac{r}{2} + 1)^{\binom{n}{2} + o(n^2)}$.

Outline of 0-1 law

Approximate Structure and Enumeration + Ad-hoc arguments

⇓

Exact Structure and Enumeration ($C_r(n)$ takes over)

+

0-1 law for less complicated family $(C_r(n))$

 \Downarrow

0-1 law for complicated family $(M_r(n))$

Examples where one can apply this strategy:

- \bullet \mathcal{K}_{ℓ} -free graphs (Kolaitis-Prömel-Rothschild)
- 2 T_k -free digraphs (Kühn-Osthus-Townsend-Zhao) + (Koponen)
- Triangle-free 3-uniform hypergraphs (Balogh-Mubayi) + (Koponen)
- Discrete metric spaces (Mubayi-T.)

Focus on Approximate Structure and Enumeration

Approximate structure and enumeration results ______.

- are important tools in proofs of certain 0-1 laws.
- are of independent interest in extremal combinatorics.
- have been proven for lots of combinatorial objects (e.g. graphs, digraphs, hypergraphs, colored hypergraphs, metric spaces).
- often have similar proofs using combination of:
 - extremal results
 - supersaturation results
 - stability theorems
 - graph removal lemmas
 - regularity lemmas
 - hypergraph containers theorem (Balogh-Morris-Samotij, Saxton-Thomason).

Question

Question

Is there a way to view these results (and their proofs) as examples of a general theorem (and its proof)?

Today: yes.

Main Ingredients:

- Hypergraph containers theorem (Balogh-Morris-Samotij, Saxton-Thomason).
- Triangle Removal for \mathcal{L} -structures (Aroskar-Cummings).
- Many combinatorics papers which have made the pattern of proof clear. Particularly recent work using the hypergraph containers theorem.

Remark: similar results were obtained independently by Falgas-Ravry, O'Connell, and Uzzell.

Hereditary \mathcal{L} -properties

Let $\mathcal L$ be a finite relational language and $\mathcal H$ a class of finite $\mathcal L$ -structures. $\mathcal H$ has the *hereditary property* if $A \in \mathcal H$ and $B \subseteq_{\mathcal L} A$ implies $B \in \mathcal H$.

Definition

 ${\cal H}$ is a *hereditary* ${\cal L}$ -property if it has the hereditary property and is closed under isomorphism.

In the appropriate language, most of the results we want to generalize are for hereditary \mathcal{L} -properties.

Enumeration and structure of hereditary properties in the setting of graphs and other combinatorial structures have been studied in combinatorics.

Setup

For the rest of the talk,

- \mathcal{L} is a fixed, finite relational language.
- r is the maximum arity of the relation symbols in \mathcal{L} .
- Assume \mathcal{H} is a hereditary \mathcal{L} -property.
- For each n, \mathcal{H}_n is the set of elements in \mathcal{H} with domain [n].
- For all n, $\mathcal{H}_n \neq \emptyset$.

Questions

- **1** $|\mathcal{H}_n| = ??$
- ② What is the approximate structure of $\bigcup_{n\in\mathbb{N}} \mathcal{H}_n$?

$\mathcal{L}_{\mathcal{H}}$ -structures

Definition

 $S_r(\mathcal{H})$ is the set of complete, quantifier-free \mathcal{L} -types $p(x_1,\ldots,x_r)$ s.t. for each $i\neq j,\,x_i\neq x_j\in p(\bar{x})$ and $p(\bar{x})$ is realized in some element of \mathcal{H} .

Definition

$$\mathcal{L}_{\mathcal{H}} = \{R_p(x_1, \ldots, x_r) : p(x_1, \ldots, x_r) \in S_r(\mathcal{H})\}.$$

Notation: $V^{\underline{\ell}} = \{(a_1, \ldots, a_{\ell}) \in V^{\ell} : a_i \neq a_j \text{ each } i \neq j\}.$

Definition

Let V be a set. An $\mathcal{L}_{\mathcal{H}}$ -structure M with domain V is an $\mathcal{L}_{\mathcal{H}}$ -template if

- For all $\bar{a} \in V^{\underline{r}}$, there is $R_{\rho}(\bar{x}) \in \mathcal{L}_{\mathcal{H}}$ such that $M \models R_{\rho}(\bar{a})$.
- For all $p, q \in S_r(\mathcal{H})$, if $p(x_1, \ldots, x_r) = q(x_{\mu(1)}, \ldots, x_{\mu(r)})$ for some permutation μ of [r], then for all $(a_1, \ldots, a_r) \in V^r$,

$$M \models R_p(a_1, \ldots, a_r)$$
 if and only if $M \models R_q(a_{\mu(1)}, \ldots, a_{\mu(r)})$.

Example

 $\mathcal{L} = \{E(x, y)\}$ and \mathcal{H} is the class of all finite triangle-free graphs.

$$p(x,y) = \text{ the complete q.f. type containing } E(x,y) \land E(y,x) \land x \neq y.$$

$$q(x,y) = \text{ the complete q.f. type containing } \neg E(x,y) \land \neg E(y,x) \land x \neq y.$$

Then
$$S_r(\mathcal{H}) = \{p(x,y), q(x,y)\}$$
 and $\mathcal{L}_{\mathcal{H}} = \{R_p(x,y), R_q(x,y)\}.$

Draw Example.

Subpatterns

Suppose M is an $\mathcal{L}_{\mathcal{H}}$ -template with domain V.

Definition

An \mathcal{L} -structure N is a *full subpattern* of M if dom(N) = V and for all $\{a_1, \ldots, a_r\} \in \binom{V}{r}$,

if
$$p(x_1,\ldots,x_r)=qftp^N(a_1,\ldots,a_r)$$
 then $M\models R_p(a_1,\ldots,a_r)$.

In this case, write $N \leq_D M$.

Observe any \mathcal{L} -structure N with domain V is determined by $qttp^N(a_1,\ldots,a_r)$ for all $\{a_1,\ldots,a_r\}\in\binom{V}{r}$.

Example.

Extremal Structures

Definition

An $\mathcal{L}_{\mathcal{H}}$ -template M is called \mathcal{H} -random if $N \leq_p M$ implies $N \in \mathcal{H}$.

- $\mathcal{R}([n], \mathcal{H})$ is the set of \mathcal{H} -random $\mathcal{L}_{\mathcal{H}}$ -templates with domain [n].
- $sub(M) = |\{N : N \leq_p M\}|.$
- $ex(n, \mathcal{H}) = max\{sub(M) : M \in \mathcal{R}([n], \mathcal{H})\}.$

Definition

 $M \in \mathcal{R}([n], \mathcal{H})$ is extremal if $sub(M) = ex(n, \mathcal{H})$.

Observation: $|\mathcal{H}_n| \ge \exp(n, \mathcal{H})$.

• $\mathcal{R}_{ex}([n], \mathcal{H})$ is the set of extremal M in $\mathcal{R}([n], \mathcal{H})$.

Results: Enumeration

Recall $ex(n, \mathcal{H}) = max\{sub(M) : M \in \mathcal{R}([n], \mathcal{H})\}.$

The asymptotic density of \mathcal{H} is $\pi(\mathcal{H}) := \lim_{n \to \infty} \exp(n, \mathcal{H})^{1/\binom{n}{r}}$.

Theorem (T.)

For all hereditary \mathcal{L} -properties \mathcal{H} , $\pi(\mathcal{H})$ exists.

Theorem (T.)

If $\mathcal H$ is a hereditary $\mathcal L$ -property, then the following hold.

- If $\pi(\mathcal{H}) > 1$, then $|\mathcal{H}_n| = \pi(\mathcal{H})^{\binom{n}{r} + o(n^r)}$.
- 2 If $\pi(\mathcal{H}) \leq 1$, then $|\mathcal{H}_n| = 2^{o(n^r)}$.

Distance Between First-Order Structures

Definition

Suppose \mathcal{L}_0 is a finite relational language with maximum arity r. If M and N are finite \mathcal{L}_0 -structures with domain V. Set

$$\operatorname{dist}(M,N) = \frac{|\{A \in \binom{V}{r} : \operatorname{qftp}^{M}(A) \neq \operatorname{qftp}^{N}(A)\}|}{\binom{|V|}{r}}.$$

We say M and N are δ -close if dist $(M, N) \leq \delta$.

This is basically the same as a definition of Aroskar-Cummings.

Stability and Structure

Definition

 \mathcal{H} has a *stability theorem* if for all $\delta > 0$ there is $\epsilon > 0$ such that for sufficiently large n the following holds. For all $M \in \mathcal{R}([n], \mathcal{H})$

 $sub(M) \ge ex(n, \mathcal{H})^{1-\epsilon} \Rightarrow M \text{ is } \delta\text{-close to an element of } \mathcal{R}_{ex}([n], \mathcal{H}).$

Let $E(n,\mathcal{H}) = \{G \in \mathcal{H}_n : G \leq_p M$, some $M \in \mathcal{R}_{ex}([n],\mathcal{H})\}$. Let $E^{\delta}(n,\mathcal{H}) = \{G \in \mathcal{H}_n : G \text{ is } \delta\text{-close to some } G' \in E(n,\mathcal{H})\}$.

Theorem (T.)

Suppose $\pi(\mathcal{H}) > 1$ and \mathcal{H} has a stability theorem. Then for all $\delta > 0$, there is a $\beta > 0$ such that for sufficiently large n,

$$\frac{|\mathcal{H}_n \setminus E^\delta(n,\mathcal{H})|}{|\mathcal{H}_n|} \leq 2^{-\beta \binom{n}{r}}.$$

Back to Metric Spaces

Given $r \geq 2$, let $\mathcal{L} = \{d_1, \dots, d_r\}$, and let \mathcal{M}_r be the hereditary \mathcal{L} -property obtained by closing $\bigcup_{n \in \mathbb{N}} M_r(n)$ under isomorphism.

Fact

If *r* is even then the following hold.

- $E(n, \mathcal{M}_r) = C_r(n)$, so for all $\delta > 0$, $E^{\delta}(n, \mathcal{M}_r) = C_r^{\delta}(n)$.
- $\pi(\mathcal{M}_r) = (\frac{r}{2} + 1).$

Consequently, our general counting theorem implies the following.

Theorem

When $r \geq 2$ is even, $|M_r(n)| = \pi(\mathcal{M}_r)^{\binom{n}{2} + o(n^2)} = (\frac{r}{2} + 1)^{\binom{n}{2} + o(n^2)}$.

Back to Metric Spaces

Fact

If $r \geq 2$ is even then \mathcal{M}_r has a stability theorem.

Consequently, our general structure theorem implies the following.

Theorem

Let $r \ge 2$ be even. For all $\delta > 0$, there is $\beta > 0$ such that for large n,

$$\frac{|(\mathcal{M}_r)_n \setminus E^\delta(n,\mathcal{M}_r)|}{|(\mathcal{M}_r)_n|} = \frac{|M_r(n) \setminus C_r^\delta(n)|}{|M_r(n)|} \leq 2^{-\beta \binom{n}{2}}.$$

Back to Metric Spaces

Recall that when r is even, $\bigcup_{n\in\mathbb{N}} M_r(n)$ has a 0-1 law (Mubayi-T.).

Conjecture (Mubayi-T.)

When *r* is odd, $\bigcup_{n\in\mathbb{N}} M_r(n)$ does not have a 0-1 law.

Question: What is the difference between the even and odd cases?

Theorem (Mubayi-T., T.)

When $r \ge 2$ is even, \mathcal{M}_r has a stability theorem. When r is odd, \mathcal{M}_r does not have a stability theorem.

A Conjecture

This naturally leads to the following conjecture.

Assume \mathcal{L} is a finite relational language.

Definition

Suppose \mathcal{H} is a collection of finite \mathcal{L} -structures such that $\mathcal{H}_n \neq \emptyset$ for each n. Then \mathcal{H} has a 0-1 law if $\bigcup_{n \in \mathbb{N}} \mathcal{H}_n$ has a 0-1 law.

Conjecture (T.)

If $\mathcal H$ is a hereditary $\mathcal L$ -property with $\pi(\mathcal H)>1$ and a 0-1 law, then $\mathcal H$ has a stability theorem.

- Ashwini Aroskar and James Cummings, *Limits, regularity and removal for finite structures*, arXiv:1412.808v1 [math.LO], 2014.
- József Balogh, Robert Morris, and Wojciech Samotij, *Independent sets in hypergraphs*, J. Amer. Math. Soc. **28** (2015), no. 3, 669–709. MR 3327533
- József Balogh and Dhruv Mubayi, *Almost all triangle-free triple systems are tripartite*, Combinatorica **32** (2012), no. 2, 143–169. MR 2927636
- V. Falgas-Ravry, O'Connell K., Strömberg J., and Uzzell A., *Multicolour containers* and the entropy of decorated graph limits, arXiv:1607.08152 [math.CO], 2016.
 - Phokion G. Kolaitis, Hans J. Prömel, and Bruce L. Rothschild, *K*_{I+1}-free graphs: asymptotic structure and a 0-1 law, Trans. Amer. Math. Soc. **303** (1987), no. 2, 637–671. MR 902790 (88j:05016)
 - Vera Koponen, Asymptotic probabilities of extension properties and random *I-colourable structures*, Ann. Pure Appl. Logic **163** (2012), no. 4, 391–438. MR 2876836
 - Daniela Kühn, Deryk Osthus, Timothy Townsend, and Yi Zhao, *On the structure of oriented graphs and digraphs with forbidden tournaments or cycles*, arxiv:1404.6178 [math.CO], 2014.
- David Saxton and Andrew Thomason, *Hypergraph containers*, Inventiones mathematicae **201** (2015), no. 3, 925–992 (English).