Transferring Imaginaries

Silvain Rideau

UC Berkeley

November 6th 2015

An imaginary is an equivalent class of an \varnothing -definable equivalence relation.

An imaginary is an equivalent class of an Ø-definable equivalence relation.

Example

► Let $(X_y)_{y \in Y}$ be an Ø-definable family of sets. Define $y_1 \equiv y_2$ whenever $X_{y_1} = X_{y_2}$. The set Y/\equiv is a "moduli space" for the family $(X_y)_{y \in Y}$.

An imaginary is an equivalent class of an \varnothing -definable equivalence relation.

Example

- ► Let $(X_y)_{y \in Y}$ be an Ø-definable family of sets. Define $y_1 \equiv y_2$ whenever $X_{y_1} = X_{y_2}$. The set Y/\equiv is a "moduli space" for the family $(X_y)_{y \in Y}$.
- Let *G* be a definable group and $H \leq G$ be a definable subgroup. The group G/H is interpretable but *a priori* not definable.

An imaginary is an equivalent class of an Ø-definable equivalence relation.

Example

- ► Let $(X_y)_{y \in Y}$ be an Ø-definable family of sets. Define $y_1 \equiv y_2$ whenever $X_{y_1} = X_{y_2}$. The set Y/\equiv is a "moduli space" for the family $(X_y)_{y \in Y}$.
- ▶ Let *G* be a definable group and $H \leq G$ be a definable subgroup. The group G/H is interpretable but *a priori* not definable.

Definition

A theory T eliminates imaginaries if for all \varnothing -definable equivalence relation $E \subseteq D^2$, there exists an \varnothing -definable function f defined on D such that for all $x, y \in D$:

$$xEy \iff f(x) = f(y).$$

2/22

Proposition (Shelah, 1978)

- a_1 and a_2 are not *E*-equivalent;
- ▶ $p_i(x) \vdash xEa_i$.

Definition

• A type p over M is said to be definable (over A) if for all formula $\phi(x;y)$ there is a formula $\theta(y)$ such that

$$\phi(x; a) \in p$$
 if and only if $M \models \theta(a)$.

Proposition (Shelah, 1978)

- a_1 and a_2 are not *E*-equivalent;
- ▶ $p_i(x) \vdash xEa_i$.

Definition

• A type p over M is said to be definable (over A) if for all formula $\phi(x;y)$ there is a formula $\theta(y)$ such that

$$\phi(x; a) \in p$$
 if and only if $M \models \theta(a)$.

We will often write $d_p x \phi(x; y) = \theta(y)$.

Proposition (Shelah, 1978)

- a_1 and a_2 are not *E*-equivalent;
- ▶ $p_i(x) \vdash xEa_i$.

Definition

• A type p over M is said to be definable (over A) if for all formula $\phi(x;y)$ there is a formula $\theta(y)$ such that

$$\phi(x; a) \in p$$
 if and only if $M \models \theta(a)$.

We will often write $d_p x \phi(x; y) = \theta(y)$.

• A theory is said to be stable if every type over every model of *T* is definable.

Proposition (Shelah, 1978)

- a_1 and a_2 are not *E*-equivalent;
- ▶ $p_i(x) \vdash xEa_i$.

▶ If *T* is stable and eliminates imaginaries, $A = acl(A) \subseteq M \models T$, then types over *A* have a unique definable extension to *M*.

▶ If *T* is stable and eliminates imaginaries, $A = acl(A) \subseteq M \models T$, then types over *A* have a unique definable extension to *M*.

Assume T eliminates imaginaries.

▶ If *T* is stable and eliminates imaginaries, $A = acl(A) \subseteq M \models T$, then types over *A* have a unique definable extension to *M*.

Assume *T* eliminates imaginaries.

 If X if definable, then X has a smallest (definably closed) set of definition.

▶ If *T* is stable and eliminates imaginaries, $A = acl(A) \subseteq M \models T$, then types over *A* have a unique definable extension to *M*.

Assume *T* eliminates imaginaries.

If X if definable, then X has a smallest (definably closed) set of definition. We denote it 'X'.

▶ If *T* is stable and eliminates imaginaries, $A = acl(A) \subseteq M \models T$, then types over *A* have a unique definable extension to *M*.

Assume *T* eliminates imaginaries.

- If X if definable, then X has a smallest (definably closed) set of definition. We denote it 'X'.
- ▶ If *p* is a definable type, then *p* has a smallest (definably closed) set of definition. It is called the canonical basis of *p*.

▶ If *T* is stable and eliminates imaginaries, $A = acl(A) \subseteq M \models T$, then types over *A* have a unique definable extension to *M*.

Assume *T* eliminates imaginaries.

- If X if definable, then X has a smallest (definably closed) set of definition. We denote it 'X'.
- ▶ If *p* is a definable type, then *p* has a smallest (definably closed) set of definition. It is called the canonical basis of *p*.
- Proving elimination of imaginaries in specific structures can have (more or less direct) applications.

• The theory of algebraically closed fields eliminates imaginaries in the language of rings.

- The theory of algebraically closed fields eliminates imaginaries in the language of rings.
- The theory of differentially closed fields of characteristic zero eliminates imaginaries in the language of differential rings.

- The theory of algebraically closed fields eliminates imaginaries in the language of rings.
- The theory of differentially closed fields of characteristic zero eliminates imaginaries in the language of differential rings.
- O-minimal groups eliminate imaginaries.

- The theory of algebraically closed fields eliminates imaginaries in the language of rings.
- The theory of differentially closed fields of characteristic zero eliminates imaginaries in the language of differential rings.
- *O*-minimal groups eliminate imaginaries. For example, any *O*-minimal enrichment of $(\mathbb{R}, 0, 1, +, -, \cdot)$.

- The theory of algebraically closed fields eliminates imaginaries in the language of rings.
- The theory of differentially closed fields of characteristic zero eliminates imaginaries in the language of differential rings.
- O-minimal groups eliminate imaginaries. For example, any O-minimal enrichment of $(\mathbb{R}, 0, 1, +, -, \cdot)$.
- Infinite sets do not eliminate imaginaries:

- The theory of algebraically closed fields eliminates imaginaries in the language of rings.
- The theory of differentially closed fields of characteristic zero eliminates imaginaries in the language of differential rings.
- O-minimal groups eliminate imaginaries. For example, any O-minimal enrichment of $(\mathbb{R}, 0, 1, +, -, \cdot)$.
- Infinite sets do not eliminate imaginaries:
 - ▶ The quotient of M^n by the action of \mathfrak{S}_n is not represented.

- The theory of algebraically closed fields eliminates imaginaries in the language of rings.
- The theory of differentially closed fields of characteristic zero eliminates imaginaries in the language of differential rings.
- O-minimal groups eliminate imaginaries. For example, any O-minimal enrichment of $(\mathbb{R}, 0, 1, +, -, \cdot)$.
- Infinite sets do not eliminate imaginaries:
 - ▶ The quotient of M^n by the action of \mathfrak{S}_n is not represented.
- \mathbb{Q}_p does not eliminate imaginaries in the ring language :

- The theory of algebraically closed fields eliminates imaginaries in the language of rings.
- The theory of differentially closed fields of characteristic zero eliminates imaginaries in the language of differential rings.
- O-minimal groups eliminate imaginaries. For example, any O-minimal enrichment of $(\mathbb{R}, 0, 1, +, -, \cdot)$.
- Infinite sets do not eliminate imaginaries:
 - ▶ The quotient of M^n by the action of \mathfrak{S}_n is not represented.
- \mathbb{Q}_p does not eliminate imaginaries in the ring language :
 - \mathbb{Z} can be interpreted as $\mathbb{Q}_p^* / \mathbb{Z}_p^*$;

- The theory of algebraically closed fields eliminates imaginaries in the language of rings.
- The theory of differentially closed fields of characteristic zero eliminates imaginaries in the language of differential rings.
- O-minimal groups eliminate imaginaries. For example, any O-minimal enrichment of $(\mathbb{R}, 0, 1, +, -, \cdot)$.
- Infinite sets do not eliminate imaginaries:
 - ▶ The quotient of M^n by the action of \mathfrak{S}_n is not represented.
- \mathbb{Q}_p does not eliminate imaginaries in the ring language :
 - \mathbb{Z} can be interpreted as $\mathbb{Q}_p^* / \mathbb{Z}_p^*$;
 - All infinite definable subsets of \mathbb{Q}_p^n have cardinality continuum.

- The theory of algebraically closed fields eliminates imaginaries in the language of rings.
- The theory of differentially closed fields of characteristic zero eliminates imaginaries in the language of differential rings.
- O-minimal groups eliminate imaginaries. For example, any O-minimal enrichment of $(\mathbb{R}, 0, 1, +, -, \cdot)$.
- Infinite sets do not eliminate imaginaries:
 - ▶ The quotient of M^n by the action of \mathfrak{S}_n is not represented.
- \mathbb{Q}_p does not eliminate imaginaries in the ring language :
 - \mathbb{Z} can be interpreted as $\mathbb{Q}_p^* / \mathbb{Z}_p^*$;
 - All infinite definable subsets of \mathbb{Q}_p^n have cardinality continuum.
- Henselian valued fields do not eliminate imaginaries in the language of valued rings.

Definition

Let *T* be a theory. For all \varnothing -definable equivalence relation $E \subseteq \prod_i S_i$, let S_E be a new sort and $f_E : \prod S_i \to S_E$ be a new function symbol. Let

$$\mathcal{L}^{eq} \coloneqq \mathcal{L} \cup \{S_E, f_E \mid E \text{ is an } \emptyset\text{-definable equivalence relation}\}$$

and

$$T^{\mathrm{eq}} := T \cup \{f_E \text{ is onto and } \forall x, y (f_E(x) = f_E(y) \leftrightarrow xEy)\}.$$

Definition

Let *T* be a theory. For all \varnothing -definable equivalence relation $E \subseteq \prod_i S_i$, let S_E be a new sort and $f_E : \prod S_i \to S_E$ be a new function symbol. Let

$$\mathcal{L}^{eq} \coloneqq \mathcal{L} \cup \{S_E, f_E \mid E \text{ is an } \varnothing\text{-definable equivalence relation}\}$$

and

$$T^{\text{eq}} := T \cup \{f_E \text{ is onto and } \forall x, y (f_E(x) = f_E(y) \leftrightarrow xEy)\}.$$

Remark

▶ Let $M \models T$, then M can naturally be enriched into a model of T^{eq} that we denote M^{eq} .

Definition

Let *T* be a theory. For all \varnothing -definable equivalence relation $E \subseteq \prod_i S_i$, let S_E be a new sort and $f_E : \prod S_i \to S_E$ be a new function symbol. Let

$$\mathcal{L}^{eq} := \mathcal{L} \cup \{S_E, f_E \mid E \text{ is an } \emptyset\text{-definable equivalence relation}\}$$

and

$$T^{\mathrm{eq}} := T \cup \{f_E \text{ is onto and } \forall x, y (f_E(x) = f_E(y) \leftrightarrow xEy)\}.$$

Remark

- Let $M \models T$, then M can naturally be enriched into a model of T^{eq} that we denote M^{eq} .
- We will denote by $\mathcal R$ the set of $\mathcal L$ -sorts. They are called the real sorts.

Definition

Let *T* be a theory. For all \varnothing -definable equivalence relation $E \subseteq \prod_i S_i$, let S_E be a new sort and $f_E : \prod S_i \to S_E$ be a new function symbol. Let

$$\mathcal{L}^{eq} \coloneqq \mathcal{L} \cup \{S_E, f_E \mid E \text{ is an } \varnothing\text{-definable equivalence relation}\}$$

and

$$T^{\mathrm{eq}} := T \cup \{f_E \text{ is onto and } \forall x, y (f_E(x) = f_E(y) \leftrightarrow xEy)\}.$$

Remark

- Let $M \models T$, then M can naturally be enriched into a model of T^{eq} that we denote M^{eq} .
- We will denote by $\mathcal R$ the set of $\mathcal L$ -sorts. They are called the real sorts.
- The theory T^{eq} eliminates imaginaries.

Definition

Let *T* be a theory. For all \varnothing -definable equivalence relation $E \subseteq \prod_i S_i$, let S_E be a new sort and $f_E : \prod S_i \to S_E$ be a new function symbol. Let

$$\mathcal{L}^{eq} \coloneqq \mathcal{L} \cup \{S_E, f_E \mid E \text{ is an } \varnothing\text{-definable equivalence relation}\}$$

and

$$T^{\mathrm{eq}} := T \cup \{f_E \text{ is onto and } \forall x, y (f_E(x) = f_E(y) \leftrightarrow xEy)\}.$$

Remark

- Let $M \models T$, then M can naturally be enriched into a model of T^{eq} that we denote M^{eq} .
- We will denote by $\mathcal R$ the set of $\mathcal L$ -sorts. They are called the real sorts.
- The theory T^{eq} eliminates imaginaries.
- We will denote by dcl^{eq} (acl^{eq}) the definable (algebraic) closure in T^{eq} .

Definition

Let *T* be a theory. For all \varnothing -definable equivalence relation $E \subseteq \prod_i S_i$, let S_E be a new sort and $f_E : \prod S_i \to S_E$ be a new function symbol. Let

$$\mathcal{L}^{eq} := \mathcal{L} \cup \{S_E, f_E \mid E \text{ is an } \emptyset\text{-definable equivalence relation}\}$$

and

$$T^{\text{eq}} := T \cup \{f_E \text{ is onto and } \forall x, y (f_E(x) = f_E(y) \leftrightarrow xEy)\}.$$

Proposition

A theory T (with two constants) eliminates imaginaries if and only if for all $M \models T$ and $e \in M^{eq}$, there exists a tuple $a \in M$ such that

$$e \in \operatorname{dcl}^{\operatorname{eq}}(a)$$
 and $a \in \operatorname{dcl}^{\operatorname{eq}}(e)$.

Definition

A theory T weakly eliminates imaginaries if for all $M \models T$ and $e \in M^{eq}$, there exists a tuple $a \in M$ such that

$$e \in \operatorname{dcl}^{\operatorname{eq}}(a)$$
 and $a \in \operatorname{acl}^{\operatorname{eq}}(e)$.

Definition

A theory *T* weakly eliminates imaginaries if for all $M \models T$ and $e \in M^{eq}$, there exists a tuple $a \in M$ such that

$$e \in \operatorname{dcl}^{\operatorname{eq}}(a)$$
 and $a \in \operatorname{acl}^{\operatorname{eq}}(e)$.

Proposition

A theory *T* eliminates imaginaries if and only if:

Definition

A theory *T* weakly eliminates imaginaries if for all $M \models T$ and $e \in M^{eq}$, there exists a tuple $a \in M$ such that

$$e \in \operatorname{dcl}^{\operatorname{eq}}(a)$$
 and $a \in \operatorname{acl}^{\operatorname{eq}}(e)$.

Proposition

A theory *T* eliminates imaginaries if and only if:

I. *T* weakly eliminates imaginaries.

Definition

A theory T weakly eliminates imaginaries if for all $M \models T$ and $e \in M^{eq}$, there exists a tuple $a \in M$ such that

$$e \in \operatorname{dcl}^{\operatorname{eq}}(a)$$
 and $a \in \operatorname{acl}^{\operatorname{eq}}(e)$.

Proposition

A theory *T* eliminates imaginaries if and only if:

- **I.** *T* weakly eliminates imaginaries.
- **2.** For all $M \models T$, the quotient of M^n by the action of \mathfrak{S}_n is represented.

Weak elimination

Definition

A theory T weakly eliminates imaginaries if for all $M \models T$ and $e \in M^{eq}$, there exists a tuple $a \in M$ such that

$$e \in \operatorname{dcl}^{eq}(a)$$
 and $a \in \operatorname{acl}^{eq}(e)$.

Proposition

A theory *T* eliminates imaginaries if and only if:

- **I.** *T* weakly eliminates imaginaries.
- **2.** For all $M \models T$, the quotient of M^n by the action of \mathfrak{S}_n is represented.

Example

Infinite sets weakly eliminate imaginaries.

Weak elimination

Definition

A theory T weakly eliminates imaginaries if for all $M \models T$ and $e \in M^{eq}$, there exists a tuple $a \in M$ such that

$$e \in \operatorname{dcl}^{eq}(a)$$
 and $a \in \operatorname{acl}^{eq}(e)$.

Proposition

A theory *T* eliminates imaginaries if and only if:

- **I.** *T* weakly eliminates imaginaries.
- **2.** For all $M \models T$, the quotient of M^n by the action of \mathfrak{S}_n is represented.

Example

- Infinite sets weakly eliminate imaginaries.
- Any strongly minimal theory weakly eliminates imaginaries.

▶ A finite valued function $X \to Y$ is a subset of $X \times Y$ such that for all $x \in X$, the set Y_x is finite.

▶ A finite valued function $X \to Y$ is a subset of $X \times Y$ such that for all $x \in X$, the set Y_x is finite.

Proposition

The following are equivalent:

I. *T* weakly eliminates imaginaries

► A finite valued function $X \to Y$ is a subset of $X \times Y$ such that for all $x \in X$, the set Y_x is finite.

Proposition

The following are equivalent:

- **I.** *T* weakly eliminates imaginaries
- **2.** Every set definable in models of *T* has a smallest (algebraically closed) set of definition.

▶ A finite valued function $X \to Y$ is a subset of $X \times Y$ such that for all $x \in X$, the set Y_x is finite.

Proposition

The following are equivalent:

- **I.** *T* weakly eliminates imaginaries
- **2.** Every set definable in models of *T* has a smallest (algebraically closed) set of definition.
- 3. Every finite valued function $M \to M$ definable in $M \models T$ has a smallest (algebraically closed) set of definition.

▶ Let *T* be an \mathcal{L} -theory and $T' \supseteq T_{\forall}$ be an \mathcal{L}' -theory. Let $M' \models T'$ and $M \models T$ containing M'.

- ▶ Let *T* be an \mathcal{L} -theory and $T' \supseteq T_{\forall}$ be an \mathcal{L}' -theory. Let $M' \models T'$ and $M \models T$ containing M'.
- Assume that every finite valued function f definable in M' is covered by a finite valued function g defined in M.

- ▶ Let *T* be an \mathcal{L} -theory and $T' \supseteq T_{\forall}$ be an \mathcal{L}' -theory. Let $M' \models T'$ and $M \models T$ containing M'.
- Assume that every finite valued function *f* definable in *M'* is covered by a finite valued function *g* defined in *M*.
- One would like to deduce elimination of imaginaries in *T'* from elimination of imaginaries in *T*.

- ▶ Let *T* be an \mathcal{L} -theory and $T' \supseteq T_{\forall}$ be an \mathcal{L}' -theory. Let $M' \models T'$ and $M \models T$ containing M'.
- Assume that every finite valued function f definable in M' is covered by a finite valued function g defined in M.
- One would like to deduce elimination of imaginaries in *T'* from elimination of imaginaries in *T*.
- ▶ There are a number of problems:

- ▶ Let *T* be an \mathcal{L} -theory and $T' \supseteq T_{\forall}$ be an \mathcal{L}' -theory. Let $M' \models T'$ and $M \models T$ containing M'.
- Assume that every finite valued function *f* definable in *M'* is covered by a finite valued function *g* defined in *M*.
- One would like to deduce elimination of imaginaries in *T'* from elimination of imaginaries in *T*.
- ▶ There are a number of problems:
 - ▶ No control the domain of *f*.

- ▶ Let *T* be an \mathcal{L} -theory and $T' \supseteq T_{\forall}$ be an \mathcal{L}' -theory. Let $M' \models T'$ and $M \models T$ containing M'.
- Assume that every finite valued function f definable in M' is covered by a finite valued function g defined in M.
- One would like to deduce elimination of imaginaries in *T'* from elimination of imaginaries in *T*.
- ▶ There are a number of problems:
 - ▶ No control the domain of *f*.
 - g is not canonical (unless it can somehow be taken minimal).

- Let *T* be an \mathcal{L} -theory and $T' \supseteq T_{\forall}$ be an \mathcal{L}' -theory. Let $M' \models T'$ and $M \models T$ containing M'.
- ▶ Assume that every finite valued function *f* definable in *M'* is covered by a finite valued function *g* defined in *M*.
- One would like to deduce elimination of imaginaries in *T'* from elimination of imaginaries in *T*.
- ▶ There are a number of problems:
 - ▶ No control the domain of *f*.
 - *g* is not canonical (unless it can somehow be taken minimal).
 - ► The smallest set of definition of *g* might contain points from $M \setminus M'$.

- Let *T* be an \mathcal{L} -theory and $T' \supseteq T_{\forall}$ be an \mathcal{L}' -theory. Let $M' \models T'$ and $M \models T$ containing M'.
- Assume that every finite valued function f definable in M' is covered by a finite valued function g defined in M.
- One would like to deduce elimination of imaginaries in *T'* from elimination of imaginaries in *T*.
- ▶ There are a number of problems:
 - No control the domain of *f*.
 - g is not canonical (unless it can somehow be taken minimal).
 - ▶ The smallest set of definition of *g* might contain points from $M \setminus M'$.
 - Unclear how to recover f from g.

In the case of the field $(\mathbb{R}, 0, 1, +, -, \cdot)$:

▶ Take any finite valued function f definable in \mathbb{R} . Let g be the Zariski closure of f. Then g is a finite valued function definable in \mathbb{C} .

- ▶ Take any finite valued function f definable in \mathbb{R} . Let g be the Zariski closure of f. Then g is a finite valued function definable in \mathbb{C} .
- ▶ Let $A \subseteq \mathbb{C}$ be the the smallest set of definition of g.

- ▶ Take any finite valued function f definable in \mathbb{R} . Let g be the Zariski closure of f. Then g is a finite valued function definable in \mathbb{C} .
- ▶ Let $A \subseteq \mathbb{C}$ be the the smallest set of definition of g.
- ▶ The smallest set of definition of $g \cap \mathbb{R}$ is $A \cap \mathbb{R}$.

- ▶ Take any finite valued function f definable in \mathbb{R} . Let g be the Zariski closure of f. Then g is a finite valued function definable in \mathbb{C} .
- ▶ Let $A \subseteq \mathbb{C}$ be the the smallest set of definition of g.
- ► The smallest set of definition of $g \cap \mathbb{R}$ is $A \cap \mathbb{R}$.
- f can be recovered from $g \cap \mathbb{R}$ using the order and the fact that every definable $X \subseteq \mathbb{R}$ has a smallest subset of definition.

In the case of the field $(\mathbb{R}, 0, 1, +, -, \cdot)$:

- ▶ Take any finite valued function f definable in \mathbb{R} . Let g be the Zariski closure of f. Then g is a finite valued function definable in \mathbb{C} .
- ▶ Let $A \subseteq \mathbb{C}$ be the smallest set of definition of g.
- ▶ The smallest set of definition of $g \cap \mathbb{R}$ is $A \cap \mathbb{R}$.
- f can be recovered from $g \cap \mathbb{R}$ using the order and the fact that every definable $X \subseteq \mathbb{R}$ has a smallest subset of definition.

Proposition (Hrushovski-Martin-R., 2014)

Let T' be a theory of fields such that, for all $M \models T'$ and $A \subseteq M$:

In the case of the field $(\mathbb{R}, 0, 1, +, -, \cdot)$:

- ▶ Take any finite valued function f definable in \mathbb{R} . Let g be the Zariski closure of f. Then g is a finite valued function definable in \mathbb{C} .
- ▶ Let $A \subseteq \mathbb{C}$ be the smallest set of definition of g.
- ▶ The smallest set of definition of $g \cap \mathbb{R}$ is $A \cap \mathbb{R}$.
- f can be recovered from $g \cap \mathbb{R}$ using the order and the fact that every definable $X \subseteq \mathbb{R}$ has a smallest subset of definition.

Proposition (Hrushovski-Martin-R., 2014)

Let T' be a theory of fields such that, for all $M \models T'$ and $A \subseteq M$:

I.
$$dcl(A) = acl(A) \subseteq \overline{A}^{alg}$$
;

In the case of the field $(\mathbb{R}, 0, 1, +, -, \cdot)$:

- ▶ Take any finite valued function f definable in \mathbb{R} . Let g be the Zariski closure of f. Then g is a finite valued function definable in \mathbb{C} .
- ▶ Let $A \subseteq \mathbb{C}$ be the smallest set of definition of g.
- ▶ The smallest set of definition of $g \cap \mathbb{R}$ is $A \cap \mathbb{R}$.
- f can be recovered from $g \cap \mathbb{R}$ using the order and the fact that every definable $X \subseteq \mathbb{R}$ has a smallest subset of definition.

Proposition (Hrushovski-Martin-R., 2014)

Let T' be a theory of fields such that, for all $M \models T'$ and $A \subseteq M$:

- I. $dcl(A) = acl(A) \subseteq \overline{A}^{alg}$;
- **2.** Every definable $X \subseteq M$ has a smallest subset of definition.

In the case of the field $(\mathbb{R}, 0, 1, +, -, \cdot)$:

- ▶ Take any finite valued function f definable in \mathbb{R} . Let g be the Zariski closure of f. Then g is a finite valued function definable in \mathbb{C} .
- ▶ Let $A \subseteq \mathbb{C}$ be the smallest set of definition of g.
- ▶ The smallest set of definition of $g \cap \mathbb{R}$ is $A \cap \mathbb{R}$.
- f can be recovered from $g \cap \mathbb{R}$ using the order and the fact that every definable $X \subseteq \mathbb{R}$ has a smallest subset of definition.

Proposition (Hrushovski-Martin-R., 2014)

Let T' be a theory of fields such that, for all $M \models T'$ and $A \subseteq M$:

- I. $dcl(A) = acl(A) \subseteq \overline{A}^{alg}$;
- **2.** Every definable $X \subseteq M$ has a smallest subset of definition.

Then *T* eliminates imaginaries.

Remark

Hypothesis 1 holds in \mathbb{Q}_p but not hypothesis 2 (in the language of rings).

Proposition (Hrushovski-Martin-R., 2014)

Let T be an $\mathcal L$ -theory that eliminates quantifiers and imaginaries and $T'\supseteq T_\forall$ an $\mathcal L'$ -theory.

Proposition (Hrushovski-Martin-R., 2014)

Let T be an \mathcal{L} -theory that eliminates quantifiers and imaginaries and $T' \supseteq T_{\forall}$ an \mathcal{L}' -theory. Assume that, for all $M' \models T'$, $M \models T$ containing M' and $A \subseteq M'$:

Proposition (Hrushovski-Martin-R., 2014)

Let T be an \mathcal{L} -theory that eliminates quantifiers and imaginaries and $T' \supseteq T_{\forall}$ an \mathcal{L}' -theory. Assume that, for all $M' \models T'$, $M \models T$ containing M' and $A \subseteq M'$:

I.
$$\operatorname{dcl}_{\mathcal{L}'}(A) = \operatorname{acl}_{\mathcal{L}'}(A) \subseteq \operatorname{acl}_{\mathcal{L}}(A)$$
;

Proposition (Hrushovski-Martin-R., 2014)

Let T be an \mathcal{L} -theory that eliminates quantifiers and imaginaries and $T' \supseteq T_{\forall}$ an \mathcal{L}' -theory. Assume that, for all $M' \models T'$, $M \models T$ containing M' and $A \subseteq M'$:

- I. $\operatorname{dcl}_{\mathcal{L}'}(A) = \operatorname{acl}_{\mathcal{L}'}(A) \subseteq \operatorname{acl}_{\mathcal{L}}(A)$;
- **2.** Every definable $X \subseteq M'$ has a smallest subset of definition;

Proposition (Hrushovski-Martin-R., 2014)

Let T be an \mathcal{L} -theory that eliminates quantifiers and imaginaries and $T' \supseteq T_{\forall}$ an \mathcal{L}' -theory. Assume that, for all $M' \models T'$, $M \models T$ containing M' and $A \subseteq M'$:

- I. $\operatorname{dcl}_{\mathcal{L}'}(A) = \operatorname{acl}_{\mathcal{L}'}(A) \subseteq \operatorname{acl}_{\mathcal{L}}(A)$;
- **2.** Every definable $X \subseteq M'$ has a smallest subset of definition;
- 3. For all $e \in \operatorname{dcl}_M(M')$, there exists $e' \in M'$ such that for all $\sigma \in \operatorname{Aut}(M)$ stabilising M' globally,

$$\sigma(e) = e$$
 if and only if $\sigma(e') = e'$;

Proposition (Hrushovski-Martin-R., 2014)

Let T be an \mathcal{L} -theory that eliminates quantifiers and imaginaries and $T' \supseteq T_{\forall}$ an \mathcal{L}' -theory. Assume that, for all $M' \models T'$, $M \models T$ containing M' and $A \subseteq M'$:

- I. $\operatorname{dcl}_{\mathcal{L}'}(A) = \operatorname{acl}_{\mathcal{L}'}(A) \subseteq \operatorname{acl}_{\mathcal{L}}(A)$;
- **2.** Every definable $X \subseteq M'$ has a smallest subset of definition;
- 3. For all $e \in \operatorname{dcl}_M(M')$, there exists $e' \in M'$ such that for all $\sigma \in \operatorname{Aut}(M)$ stabilising M' globally,

$$\sigma(e) = e$$
 if and only if $\sigma(e') = e'$;

4. Assume $A = \operatorname{acl}_{\mathcal{L}'}(A)$ and let $p \in \mathcal{S}_1^{\mathcal{L}'}(A)$. Then there exists $\widetilde{p} \in \mathcal{S}_1^{\mathcal{L}}(M)$ definable over A such that $p \cup \widetilde{p}|_{M'}$ is consistent.

Proposition

Let T_i be an \mathcal{L}_i -theory that eliminates quantifiers and imaginaries and $T' \supseteq \bigcup_i T_{i,\forall}$ an \mathcal{L}' -theory. Assume that, for all $M' \models T'$, $M_i \models T_i$ containing M' and $A \subseteq M'$:

- I. $\operatorname{dcl}_{\mathcal{L}'}(A) = \operatorname{acl}_{\mathcal{L}'}(A) \subseteq \operatorname{acl}_{\mathcal{L}_i}(A)$;
- **2.** Every definable $X \subseteq M'$ has a smallest subset of definition;
- 3. For all $e \in \operatorname{dcl}_{M_i}(M')$, there exists $e' \in M'$ such that for all $\sigma \in \operatorname{Aut}(M_i)$ stabilising M' globally,

$$\sigma(e) = e$$
 if and only if $\sigma(e') = e'$;

4. Assume $A = \operatorname{acl}_{\mathcal{L}'}(A)$ and let $p \in \mathcal{S}_1^{\mathcal{L}'}(A)$. Then there exists $\widetilde{p}_i \in \mathcal{S}_1^{\mathcal{L}_i}(M_i)$ definable over A such that $p \cup \bigcup_i \widetilde{p}_i|_{M'}$ is consistent.

Then T' weakly eliminates imaginaries.

• All the imaginaries in $\mathbb R$ come from ACF (and hence they can be eliminated).

- All the imaginaries in \mathbb{R} come from ACF (and hence they can be eliminated).
- All the imaginaries in real closed valued fields come from ACVF (whose imaginaries were described by Haskell, Hrushovski and Macpherson).

- All the imaginaries in $\mathbb R$ come from ACF (and hence they can be eliminated).
- All the imaginaries in real closed valued fields come from ACVF (whose imaginaries were described by Haskell, Hrushovski and Macpherson).
- All the imaginaries in \mathbb{Q}_n come from ACVF.

- All the imaginaries in ℝ come from ACF (and hence they can be eliminated).
- All the imaginaries in real closed valued fields come from ACVF (whose imaginaries were described by Haskell, Hrushovski and Macpherson).
- All the imaginaries in \mathbb{Q}_n come from ACVF.
- All the imaginaries in $\prod_p \mathbb{Q}_p / \mathfrak{U}$ come from ACVF.

▶ If T is an \mathcal{L} -theory, we may want to form T_{σ} the $\mathcal{L} \cup \{\sigma\}$ -theory of models of T with an automorphism.

- If T is an \mathcal{L} -theory, we may want to form T_{σ} the $\mathcal{L} \cup \{\sigma\}$ -theory of models of T with an automorphism.
- We will mainly be interested in T_A , the model companion of T_σ , if it exists (and from now on, we will assume it exists).

- If T is an \mathcal{L} -theory, we may want to form T_{σ} the $\mathcal{L} \cup \{\sigma\}$ -theory of models of T with an automorphism.
- We will mainly be interested in T_A , the model companion of T_σ , if it exists (and from now on, we will assume it exists).

Proposition (Chatzidakis-Pillay, 1998)

Assume T is strongly minimal, then T_A weakly eliminates imaginaries.

- If T is an \mathcal{L} -theory, we may want to form T_{σ} the $\mathcal{L} \cup \{\sigma\}$ -theory of models of T with an automorphism.
- We will mainly be interested in T_A , the model companion of T_σ , if it exists (and from now on, we will assume it exists).

Proposition (Chatzidakis-Pillay, 1998)

Assume T is strongly minimal, then T_A weakly eliminates imaginaries.

Proposition (Hrushovski, 2012)

Let T be a stable theory that eliminates imaginaries. Assume that T has 3-uniqueness, then T_A eliminates imaginaries.

▶ Let *T* be some \mathcal{L} -theory, *f* be new function symbol and $T' \supseteq T$ be an $\mathcal{L} \cup \{f\}$ -theory.

- ▶ Let *T* be some \mathcal{L} -theory, *f* be new function symbol and $T' \supseteq T$ be an $\mathcal{L} \cup \{f\}$ -theory.
- ▶ Let $M \models T'$. We define:

$$\begin{array}{cccc} \nabla_{\omega}: & \mathcal{S}_{x}^{\mathcal{L}'}(M) & \to & \mathcal{S}_{x_{\omega}}^{\mathcal{L}}(M) \\ & \operatorname{tp}_{\mathcal{L}'}(a/M) & \mapsto & \operatorname{tp}_{\mathcal{L}}(f_{\omega}(a)/M) \end{array}$$

where $f_{\omega}(a) = (f^n(a))_{n \in \mathbb{N}}$.

- ▶ Let *T* be some \mathcal{L} -theory, *f* be new function symbol and $T' \supseteq T$ be an $\mathcal{L} \cup \{f\}$ -theory.
- ▶ Let $M \models T'$. We define:

$$\nabla_{\omega}: \quad \mathcal{S}_{x}^{\mathcal{L}'}(M) \quad \rightarrow \quad \mathcal{S}_{x_{\omega}}^{\mathcal{L}}(M) \\ \operatorname{tp}_{\mathcal{L}'}(a/M) \quad \mapsto \quad \operatorname{tp}_{\mathcal{L}}(f_{\omega}(a)/M)$$

where
$$f_{\omega}(a) = (f^n(a))_{n \in \mathbb{N}}$$
.

• We assume that ∇_{ω} is injective (this is a form of quantifier elimination).

- ▶ Let *T* be some \mathcal{L} -theory, *f* be new function symbol and $T' \supseteq T$ be an $\mathcal{L} \cup \{f\}$ -theory.
- ▶ Let $M \models T'$. We define:

$$\nabla_{\omega}: \quad \mathcal{S}_{x}^{\mathcal{L}'}(M) \quad \rightarrow \quad \mathcal{S}_{x_{\omega}}^{\mathcal{L}}(M) \\ \operatorname{tp}_{\mathcal{L}'}(a/M) \quad \mapsto \quad \operatorname{tp}_{\mathcal{L}}(f_{\omega}(a)/M)$$

where
$$f_{\omega}(a) = (f^n(a))_{n \in \mathbb{N}}$$
.

- We assume that ∇_{ω} is injective (this is a form of quantifier elimination).
- ▶ That does not, in general, hold in T_A .

- ▶ Let *T* be some \mathcal{L} -theory, *f* be new function symbol and $T' \supseteq T$ be an $\mathcal{L} \cup \{f\}$ -theory.
- ▶ Let $M \models T'$. We define:

$$\nabla_{\omega}: \quad \mathcal{S}_{x}^{\mathcal{L}'}(M) \quad \rightarrow \quad \mathcal{S}_{x_{\omega}}^{\mathcal{L}}(M) \\ \operatorname{tp}_{\mathcal{L}'}(a/M) \quad \mapsto \quad \operatorname{tp}_{\mathcal{L}}(f_{\omega}(a)/M)$$

where
$$f_{\omega}(a) = (f^n(a))_{n \in \mathbb{N}}$$
.

- We assume that ∇_{ω} is injective (this is a form of quantifier elimination).
- ▶ That does not, in general, hold in T_A .
- It does hold in differentially closed fields of characteristic zero and separably closed fields of finite imperfection degree (and their valued equivalents).

Proposition (Hrushovski, 2014)

Let *T* be a theory such that:

Then *T* weakly eliminates imaginaries.

Proposition (Hrushovski, 2014)

Let *T* be a theory such that:

I. For every definable set *X* there exist an $\mathcal{L}^{eq}(acl^{eq}(^{r}X^{1}))$ -definable type *p* which is consistent with *X*.

Then *T* weakly eliminates imaginaries.

Proposition (Hrushovski, 2014)

Let *T* be a theory such that:

- **I.** For every definable set *X* there exist an $\mathcal{L}^{eq}(acl^{eq}({}^rX^{}))$ -definable type *p* which is consistent with *X*.
- 2. Let $A = \operatorname{acl}^{\operatorname{eq}}(A) \subseteq M^{\operatorname{eq}} \models T^{\operatorname{eq}}$. If $p \in \mathcal{S}(M)$ is $\mathcal{L}^{\operatorname{eq}}(A)$ -definable, then p is $\mathcal{L}(\mathcal{R}(A))$ -definable.

Then *T* weakly eliminates imaginaries.

Proposition (Hrushovski, 2014)

Let *T* be a theory such that:

- **I.** For every definable set *X* there exist an $\mathcal{L}^{eq}(acl^{eq}({}^{r}X^{1}))$ -definable type *p* which is consistent with *X*.
- 2. Let $A = \operatorname{acl}^{\operatorname{eq}}(A) \subseteq M^{\operatorname{eq}} \models T^{\operatorname{eq}}$. If $p \in \mathcal{S}(M)$ is $\mathcal{L}^{\operatorname{eq}}(A)$ -definable, then p is $\mathcal{L}(\mathcal{R}(A))$ -definable.

Then *T* weakly eliminates imaginaries.

Remark

It suffices to prove hypothesis I in dimension 1.

In the case of differentially closed fields (K, 0, 1, +, -, \cdot , δ):

In the case of differentially closed fields $(K, 0, 1, +, -, \cdot, \delta)$:

▶ Hypothesis I is true because DCF₀ is stable.

In the case of differentially closed fields $(K, 0, 1, +, -, \cdot, \delta)$:

- ▶ Hypothesis I is true because DCF₀ is stable.
- ▶ Let $M \models DCF_0$ and $p \in S^{\mathcal{L}_{\partial}}(M)$.

In the case of differentially closed fields $(K, 0, 1, +, -, \cdot, \delta)$:

- ▶ Hypothesis I is true because DCF₀ is stable.
- ▶ Let $M \models DCF_0$ and $p \in S^{\mathcal{L}_{\partial}}(M)$.
- ► Let $A = \operatorname{acl}^{\operatorname{eq}}(A) \subseteq M^{\operatorname{eq}}$ and assume p is $\mathcal{L}^{\operatorname{eq}}_{\partial}(A)$ -definable. By elimination of imaginaries in ACF, the canonical basis of $\nabla_{\omega}(p)$ is contained in K(A). In particular, p is $\mathcal{L}_{\partial}(K(A))$ -definable.

If *T* is not stable, the previous strategy has a serious flaw:

If *T* is not stable, the previous strategy has a serious flaw:

▶ If *p* is $\mathcal{L}'(M)$ -definable, there is no reason for $\nabla_{\omega}(p)$ to be $\mathcal{L}(M)$ -definable.

If *T* is not stable, the previous strategy has a serious flaw:

- ▶ If *p* is $\mathcal{L}'(M)$ -definable, there is no reason for $\nabla_{\omega}(p)$ to be $\mathcal{L}(M)$ -definable.
- Let $\phi(x_{\omega}; y)$ be an \mathcal{L} -formula then

$$\phi(x_{\omega}; a) \in \nabla_{\omega}(p)$$
 if and only if $M \models d_p x \phi(f_{\omega}(x); a)$.

If *T* is not stable, the previous strategy has a serious flaw:

- ▶ If *p* is $\mathcal{L}'(M)$ -definable, there is no reason for $\nabla_{\omega}(p)$ to be $\mathcal{L}(M)$ -definable.
- Let $\phi(x_{\omega}; y)$ be an \mathcal{L} -formula then

$$\phi(x_{\omega}; a) \in \nabla_{\omega}(p)$$
 if and only if $M \models d_p x \phi(f_{\omega}(x); a)$.

▶ Let $a \models \nabla_{\omega}(p)$ we have:

$$\underbrace{\phi(a;M)}_{\text{externally \mathcal{L}-definable}} = \underbrace{\mathbf{d}_p \, x \, \phi(f_\omega(x);M)}_{\mathcal{L}' \text{-definable}}.$$

If *T* is not stable, the previous strategy has a serious flaw:

- ▶ If *p* is $\mathcal{L}'(M)$ -definable, there is no reason for $\nabla_{\omega}(p)$ to be $\mathcal{L}(M)$ -definable.
- Let $\phi(x_{\omega}; y)$ be an \mathcal{L} -formula then

$$\phi(x_{\omega}; a) \in \nabla_{\omega}(p)$$
 if and only if $M \models d_p x \phi(f_{\omega}(x); a)$.

▶ Let $a \models \nabla_{\omega}(p)$ we have:

$$\underbrace{\phi(a; M)}_{\text{externally } \mathcal{L}\text{-definable}} = \underbrace{d_p \, x \, \phi(f_\omega(x); M)}_{\mathcal{L}' \text{-definable}}$$

and we wish this set to be \mathcal{L} -definable.

Definition

Let $\phi(x;y)$ be a formula and M a structure, we say that ϕ has the independence property in M if there exists $(a_n)_{n\in\mathbb{N}}$ and $(b_X)_{X\subseteq\mathbb{N}}$ such that:

$$M \vDash \phi(a_n; b_X)$$
 if an only if $n \in X$

We say that the theory T is NIP (not the independence property) if no formula has the independence property in any model of T.

Definition

Let $\phi(x;y)$ be a formula and M a structure, we say that ϕ has the independence property in M if there exists $(a_n)_{n\in\mathbb{N}}$ and $(b_X)_{X\subseteq\mathbb{N}}$ such that:

$$M \vDash \phi(a_n; b_X)$$
 if an only if $n \in X$

We say that the theory *T* is NIP (not the independence property) if no formula has the independence property in any model of *T*.

Example

• All stable theories are NIP.

Definition

Let $\phi(x;y)$ be a formula and M a structure, we say that ϕ has the independence property in M if there exists $(a_n)_{n\in\mathbb{N}}$ and $(b_X)_{X\subseteq\mathbb{N}}$ such that:

$$M \vDash \phi(a_n; b_X)$$
 if an only if $n \in X$

We say that the theory *T* is NIP (not the independence property) if no formula has the independence property in any model of *T*.

Example

- All stable theories are NIP.
- All O-minimal theories are NIP.

Definition

Let $\phi(x;y)$ be a formula and M a structure, we say that ϕ has the independence property in M if there exists $(a_n)_{n\in\mathbb{N}}$ and $(b_X)_{X\subseteq\mathbb{N}}$ such that:

$$M \vDash \phi(a_n; b_X)$$
 if an only if $n \in X$

We say that the theory *T* is NIP (not the independence property) if no formula has the independence property in any model of *T*.

Example

- All stable theories are NIP.
- All O-minimal theories are NIP.
- ACVF is NIP.

Definition (Stable embeddedness)

Let M be some structure and $A \subseteq M$. We say that A is stably embedded in M if for all formula $\phi(x;y)$ and all $c \in M$, there exists a formula $\psi(x;z)$ such that

$$\phi(A;c)=\psi(A;a)$$

for some tuple $a \in A$.

Definition (Uniform stable embeddedness)

Let M be some structure and $A \subseteq M$. We say that A is uniformly stably embedded in M if for all formula $\phi(x;y)$, there exists a formula $\psi(x;z)$ such that for all tuple $c \in M$,

$$\phi(A;c) = \psi(A;a)$$

for some tuple $a \in A$.

Definition (Uniform stable embeddedness)

Let M be some structure and $A \subseteq M$. We say that A is uniformly stably embedded in M if for all formula $\phi(x;y)$, there exists a formula $\psi(x;z)$ such that for all tuple $c \in M$,

$$\phi(A;c) = \psi(A;a)$$

for some tuple $a \in A$.

Proposition (Simon-R., 2015)

Let T be an NIP be an \mathcal{L} -theory and \widetilde{T} be a complete enrichment of T in a language $\widetilde{\mathcal{L}}$. Assume that there exits $M \models \widetilde{T}$ such that $M|_{\mathcal{L}}$ is uniformly stably embedded in every elementary extension.

Definition (Uniform stable embeddedness)

Let M be some structure and $A \subseteq M$. We say that A is uniformly stably embedded in M if for all formula $\phi(x;y)$, there exists a formula $\psi(x;z)$ such that for all tuple $c \in M$,

$$\phi(A;c) = \psi(A;a)$$

for some tuple $a \in A$.

Proposition (Simon-R., 2015)

Let T be an NIP be an \mathcal{L} -theory and \widetilde{T} be a complete enrichment of T in a language $\widetilde{\mathcal{L}}$. Assume that there exits $M \models \widetilde{T}$ such that $M|_{\mathcal{L}}$ is uniformly stably embedded in every elementary extension.

Let *X* be a set that is both externally \mathcal{L} -definable and $\widetilde{\mathcal{L}}$ -definable, then *X* is \mathcal{L} -definable.

Definition (Uniform stable embeddedness)

Let M be some structure and $A \subseteq M$. We say that A is uniformly stably embedded in M if for all formula $\phi(x;y)$, there exists a formula $\psi(x;z)$ such that for all tuple $c \in M$,

$$\phi(A;c) = \psi(A;a)$$

for some tuple $a \in A$.

Proposition (Simon-R., 2015)

Let T be an NIP be an \mathcal{L} -theory and \widetilde{T} be a complete enrichment of T in a language $\widetilde{\mathcal{L}}$. Assume that there exits $M \models \widetilde{T}$ such that $M|_{\mathcal{L}}$ is uniformly stably embedded in every elementary extension.

Let *X* be a set that is both externally \mathcal{L} -definable and $\widetilde{\mathcal{L}}$ -definable, then *X* is \mathcal{L} -definable.

In particular, any \mathcal{L} -type which is $\widetilde{\mathcal{L}}$ -definable is in fact \mathcal{L} -definable.

Proposition

Let T be some \mathcal{L} -theory that eliminates imaginaries, f be new function symbol and $T' \supseteq T$ be a complete $\mathcal{L} \cup \{f\}$ -theory. Assume that:

Proposition

Let T be some \mathcal{L} -theory that eliminates imaginaries, f be new function symbol and $T' \supseteq T$ be a complete $\mathcal{L} \cup \{f\}$ -theory. Assume that:

I. ∇_{ω} is injective.

Proposition

Let T be some \mathcal{L} -theory that eliminates imaginaries, f be new function symbol and $T' \supseteq T$ be a complete $\mathcal{L} \cup \{f\}$ -theory. Assume that:

- I. ∇_{ω} is injective.
- 2. For every \mathcal{L}' -definable set X there exist an $\mathcal{L}^{eq}(\operatorname{acl}^{eq}({}^{r}X^{r}))$ -definable \mathcal{L} -type p which is consistent with X.

Proposition

Let T be some \mathcal{L} -theory that eliminates imaginaries, f be new function symbol and $T' \supseteq T$ be a complete $\mathcal{L} \cup \{f\}$ -theory. Assume that:

- I. ∇_{ω} is injective.
- 2. For every \mathcal{L}' -definable set X there exist an $\mathcal{L}^{eq}(\operatorname{acl}^{eq}({}^{r}X^{r}))$ -definable \mathcal{L} -type p which is consistent with X.
- 3. There exits $M \models \widetilde{T}$ such that $M|_{\mathcal{L}}$ is uniformly stably embedded in every elementary extension.

▶ All the imaginaries in DCF₀ come from ACF (and hence they can be eliminated).

- All the imaginaries in DCF₀ come from ACF (and hence they can be eliminated).
- All the imaginaries from separably closed fields (be it with λ-functions or Hasse derivations) come from ACF.

- ▶ All the imaginaries in DCF₀ come from ACF (and hence they can be eliminated).
- All the imaginaries from separably closed fields (be it with λ-functions or Hasse derivations) come from ACF.
- All the imaginaries in Scanlon's theory of differential valued fields come from ACVF.

- ▶ All the imaginaries in DCF₀ come from ACF (and hence they can be eliminated).
- All the imaginaries from separably closed fields (be it with λ-functions or Hasse derivations) come from ACF.
- All the imaginaries in Scanlon's theory of differential valued fields come from ACVF.
- All the imaginaries from separably closed valued fields come from ACVF.

Thanks!