Transferring Imaginaries

Silvain Rideau

UC Berkeley

November 6th 2015
An imaginary is an equivalent class of an \emptyset-definable equivalence relation.
An imaginary is an equivalent class of an \emptyset-definable equivalence relation.

Example

- Let $(X_y)_{y \in Y}$ be an \emptyset-definable family of sets. Define $y_1 \equiv y_2$ whenever $X_{y_1} = X_{y_2}$. The set Y/\equiv is a “moduli space” for the family $(X_y)_{y \in Y}$.
An imaginary is an equivalent class of an \emptyset-definable equivalence relation.

Example

- Let $(X_y)_{y \in Y}$ be an \emptyset-definable family of sets. Define $y_1 \equiv y_2$ whenever $X_{y_1} = X_{y_2}$. The set Y/\equiv is a “moduli space” for the family $(X_y)_{y \in Y}$.
- Let G be a definable group and $H \trianglelefteq G$ be a definable subgroup. The group G/H is interpretable but *a priori* not definable.
An imaginary is an equivalent class of an \emptyset-definable equivalence relation.

Example

- Let $(X_y)_{y \in Y}$ be an \emptyset-definable family of sets. Define $y_1 \equiv y_2$ whenever $X_{y_1} = X_{y_2}$. The set Y/\equiv is a “moduli space” for the family $(X_y)_{y \in Y}$.
- Let G be a definable group and $H \triangleleft G$ be a definable subgroup. The group G/H is interpretable but *a priori* not definable.

Definition

A theory T eliminates imaginaries if for all \emptyset-definable equivalence relation $E \subseteq D^2$, there exists an \emptyset-definable function f defined on D such that for all $x, y \in D$:

$$xEy \iff f(x) = f(y).$$
What is your quest?

Proposition (Shelah, 1978)

Let $A \subseteq M \models T$ be stable, $p \in S(A)$ and $p_1, p_2 \in S(M)$ be two distinct extensions of p to M definable over A. Then there exists an $\mathcal{L}(A)$-definable finite equivalence relation E and $a_1, a_2 \in M$ such that:

- a_1 and a_2 are not E-equivalent;
- $p_i(x) \vdash x E a_i$.
What is your quest?

Definition

- A type p over M is said to be definable (over A) if for all formula $\phi(x; y)$ there is a formula $\theta(y)$ such that

 $$\phi(x; a) \in p \text{ if and only if } M \models \theta(a).$$

Proposition (Shelah, 1978)

Let $A \subseteq M \models T$ stable, $p \in S(A)$ and $p_1, p_2 \in S(M)$ be two distinct extensions of p to M definable over A. Then there exists an $\mathcal{L}(A)$-definable finite equivalence relation E and $a_1, a_2 \in M$ such that:

- a_1 and a_2 are not E-equivalent;
- $p_i(x) \vdash xEa_i$.
What is your quest?

Definition

- A type p over M is said to be definable (over A) if for all formula $\phi(x;y)$ there is a formula $\theta(y)$ such that

$$\phi(x;a) \in p \text{ if and only if } M \models \theta(a).$$

We will often write $d_p x \phi(x;y) = \theta(y)$.

Proposition (Shelah, 1978)

Let $A \subseteq M \models T$ stable, $p \in S(A)$ and $p_1, p_2 \in S(M)$ be two distinct extensions of p to M definable over A. Then there exists an $L(A)$-definable finite equivalence relation E and $a_1, a_2 \in M$ such that:

- a_1 and a_2 are not E-equivalent;
- $p_i(x) \vdash xEa_i$.

What is your quest?

Definition
- A type p over M is said to be definable (over A) if for all formula $\phi(x; y)$ there is a formula $\theta(y)$ such that
 \[\phi(x; a) \in p \text{ if and only if } M \models \theta(a). \]
 We will often write $d_p x \phi(x; y) = \theta(y)$.
- A theory is said to be stable if every type over every model of T is definable.

Proposition (Shelah, 1978)

Let $A \subseteq M \models T$ stable, $p \in S(A)$ and $p_1, p_2 \in S(M)$ be two distinct extensions of p to M definable over A. Then there exists an $\mathcal{L}(A)$-definable finite equivalence relation E and $a_1, a_2 \in M$ such that:
- a_1 and a_2 are not E-equivalent;
- $p_i(x) \vdash x E a_i$.
If T is stable and eliminates imaginaries, $A = \text{acl}(A) \subseteq M \models T$, then types over A have a unique definable extension to M.
If T is stable and eliminates imaginaries, $A = \text{acl}(A) \subseteq M \models T$, then types over A have a unique definable extension to M.

Assume T eliminates imaginaries.
What is your quest?

- If T is stable and eliminates imaginaries, $A = \text{acl}(A) \subseteq M \models T$, then types over A have a unique definable extension to M.

Assume T eliminates imaginaries.

- If X if definable, then X has a smallest (definably closed) set of definition.
What is your quest?

- If T is stable and eliminates imaginaries, $A = \text{acl}(A) \subseteq M \models T$, then types over A have a unique definable extension to M.

Assume T eliminates imaginaries.

- If X is definable, then X has a smallest (definably closed) set of definition. We denote it $\llbracket X \rrbracket$.
What is your quest?

- If T is stable and eliminates imaginaries, $A = \text{acl}(A) \subseteq M \models T$, then types over A have a unique definable extension to M.

Assume T eliminates imaginaries.

- If X is definable, then X has a smallest (definably closed) set of definition. We denote it $\lbrack X \rbrack$.
- If p is a definable type, then p has a smallest (definably closed) set of definition. It is called the canonical basis of p.
If T is stable and eliminates imaginaries, $A = \text{acl}(A) \subseteq M \models T$, then types over A have a unique definable extension to M.

Assume T eliminates imaginaries.

- If X is definable, then X has a smallest (definably closed) set of definition. We denote it $\lbrack X \rbrack$.
- If p is a definable type, then p has a smallest (definably closed) set of definition. It is called the canonical basis of p.

- Proving elimination of imaginaries in specific structures can have (more or less direct) applications.
What is the airspeed velocity of an unladen swallow?

- The theory of algebraically closed fields eliminates imaginaries in the language of rings.
What is the airspeed velocity of an unladen swallow?

- The theory of algebraically closed fields eliminates imaginaries in the language of rings.
- The theory of differentially closed fields of characteristic zero eliminates imaginaries in the language of differential rings.
What is the airspeed velocity of an unladen swallow?

- The theory of algebraically closed fields eliminates imaginaries in the language of rings.
- The theory of differentially closed fields of characteristic zero eliminates imaginaries in the language of differential rings.
- O-minimal groups eliminate imaginaries.
What is the airspeed velocity of an unladen swallow?

- The theory of algebraically closed fields eliminates imaginaries in the language of rings.
- The theory of differentially closed fields of characteristic zero eliminates imaginaries in the language of differential rings.
- O-minimal groups eliminate imaginaries.
 For example, any O-minimal enrichment of $(\mathbb{R}, 0, 1, +, −, \cdot)$.

- \mathbb{Q}_p does not eliminate imaginaries in the ring language:
 - \mathbb{Z} can be interpreted as $\mathbb{Q}^{\star}p / \mathbb{Z}^{\star}p$;
 - All infinite definable subsets of \mathbb{Q} have cardinality continuum.

- Henselian valued fields do not eliminate imaginaries in the language of valued rings.
What is the airspeed velocity of an unladen swallow?

- The theory of algebraically closed fields eliminates imaginaries in the language of rings.
- The theory of differentially closed fields of characteristic zero eliminates imaginaries in the language of differential rings.
- O-minimal groups eliminate imaginaries. For example, any O-minimal enrichment of $(\mathbb{R}, 0, 1, +, −, \cdot)$.
- Infinite sets do not eliminate imaginaries:
What is the airspeed velocity of an unladen swallow?

- The theory of algebraically closed fields eliminates imaginaries in the language of rings.
- The theory of differentially closed fields of characteristic zero eliminates imaginaries in the language of differential rings.
- O-minimal groups eliminate imaginaries. For example, any O-minimal enrichment of $(\mathbb{R}, 0, 1, +, −, \cdot)$.
- Infinite sets do not eliminate imaginaries:
 - The quotient of M^n by the action of \mathfrak{S}_n is not represented.
What is the airspeed velocity of an unladen swallow?

- The theory of algebraically closed fields eliminates imaginaries in the language of rings.
- The theory of differentially closed fields of characteristic zero eliminates imaginaries in the language of differential rings.
- \(O\)-minimal groups eliminate imaginaries. For example, any \(O\)-minimal enrichment of \((\mathbb{R}, 0, 1, +, -, \cdot)\).
- Infinite sets do not eliminate imaginaries:
 - The quotient of \(M^n\) by the action of \(\mathfrak{S}_n\) is not represented.
- \(\mathbb{Q}_p\) does not eliminate imaginaries in the ring language:
The theory of algebraically closed fields eliminates imaginaries in the language of rings.

The theory of differentially closed fields of characteristic zero eliminates imaginaries in the language of differential rings.

O-minimal groups eliminate imaginaries. For example, any O-minimal enrichment of $(\mathbb{R}, 0, 1, +, -, \cdot)$.

Infinite sets do not eliminate imaginaries:

- The quotient of M^n by the action of \mathfrak{S}_n is not represented.

\mathbb{Q}_p does not eliminate imaginaries in the ring language:

- \mathbb{Z} can be interpreted as $\mathbb{Q}_p^* / \mathbb{Z}_p^*$;
What is the airspeed velocity of an unladen swallow?

- The theory of algebraically closed fields eliminates imaginaries in the language of rings.
- The theory of differentially closed fields of characteristic zero eliminates imaginaries in the language of differential rings.
- O-minimal groups eliminate imaginaries. For example, any O-minimal enrichment of $(\mathbb{R}, 0, 1, +, −, \cdot)$.
- Infinite sets do not eliminate imaginaries:
 - The quotient of M^n by the action of \mathfrak{S}_n is not represented.
- \mathbb{Q}_p does not eliminate imaginaries in the ring language:
 - \mathbb{Z} can be interpreted as $\mathbb{Q}_p^* / \mathbb{Z}_p^*$;
 - All infinite definable subsets of \mathbb{Q}_p^n have cardinality continuum.
What is the airspeed velocity of an unladen swallow?

- The theory of algebraically closed fields eliminates imaginaries in the language of rings.
- The theory of differentially closed fields of characteristic zero eliminates imaginaries in the language of differential rings.
- \(O\)-minimal groups eliminate imaginaries. For example, any \(O\)-minimal enrichment of \((\mathbb{R}, 0, 1, +, -, \cdot)\).
- Infinite sets do not eliminate imaginaries:
 - The quotient of \(M^n\) by the action of \(\mathfrak{S}_n\) is not represented.
- \(\mathbb{Q}_p\) does not eliminate imaginaries in the ring language:
 - \(\mathbb{Z}\) can be interpreted as \(\mathbb{Q}_p^* / \mathbb{Z}_p^*\);
 - All infinite definable subsets of \(\mathbb{Q}_p^n\) have cardinality continuum.
- Henselian valued fields do not eliminate imaginaries in the language of valued rings.
Shelah’s eq construction

Let T be a theory. For all \emptyset-definable equivalence relation $E \subseteq \prod_{i} S_i$, let S_E be a new sort and $f_E : \prod S_i \to S_E$ be a new function symbol. Let $L_{eq} : = L \cup \{ S_E; f_E \mid E$ is an \emptyset-definable equivalence relation $\}$ and $T_{eq} : = T \cup \{ f_E$ is onto and $\forall x; y (f_E(x) = f_E(y) \leftrightarrow x E y) \}$.
Shelah’s eq construction

Definition

Let T be a theory. For all \emptyset-definable equivalence relation $E \subseteq \prod_i S_i$, let S_E be a new sort and $f_E : \prod S_i \to S_E$ be a new function symbol. Let

$$\mathcal{L}^\text{eq} := \mathcal{L} \cup \{S_E, f_E \mid E \text{ is an } \emptyset\text{-definable equivalence relation}\}$$

and

$$T^\text{eq} := T \cup \{f_E \text{ is onto and } \forall x, y (f_E(x) = f_E(y) \iff xEy)\}.$$
Shelah’s eq construction

Definition

Let T be a theory. For all \emptyset-definable equivalence relation $E \subseteq \prod_i S_i$, let S_E be a new sort and $f_E : \prod S_i \to S_E$ be a new function symbol. Let

$$\mathcal{L}^{eq} := \mathcal{L} \cup \{S_E, f_E \mid E \text{ is an } \emptyset\text{-definable equivalence relation}\}$$

and

$$T^{eq} := T \cup \{f_E \text{ is onto and } \forall x, y (f_E(x) = f_E(y) \iff xEy)\}.$$

Remark

- Let $M \models T$, then M can naturally be enriched into a model of T^{eq} that we denote M^{eq}.
Shelah’s eq construction

Definition

Let T be a theory. For all \emptyset-definable equivalence relation $E \subseteq \prod_i S_i$, let S_E be a new sort and $f_E : \prod S_i \to S_E$ be a new function symbol. Let

$$\mathcal{L}^{eq} := \mathcal{L} \cup \{S_E, f_E \mid E \text{ is an } \emptyset \text{-definable equivalence relation}\}$$

and

$$T^{eq} := T \cup \{f_E \text{ is onto and } \forall x, y (f_E(x) = f_E(y) \iff xEy)\}.$$

Remark

- Let $M \models T$, then M can naturally be enriched into a model of T^{eq} that we denote M^{eq}.
- We will denote by \mathcal{R} the set of \mathcal{L}-sorts. They are called the real sorts.
Shelah’s eq construction

Definition
Let T be a theory. For all \emptyset-definable equivalence relation $E \subseteq \prod_i S_i$, let S_E be a new sort and $f_E : \prod S_i \to S_E$ be a new function symbol. Let

$$\mathcal{L}^{eq} := \mathcal{L} \cup \{S_E, f_E \mid E \text{ is an } \emptyset \text{-definable equivalence relation}\}$$

and

$$T^{eq} := T \cup \{f_E \text{ is onto and } \forall x, y (f_E(x) = f_E(y) \leftrightarrow xEy)\}.$$

Remark

- Let $M \models T$, then M can naturally be enriched into a model of T^{eq} that we denote M^{eq}.
- We will denote by \mathcal{R} the set of \mathcal{L}-sorts. They are called the real sorts.
- The theory T^{eq} eliminates imaginaries.
Shelah’s eq construction

Definition

Let T be a theory. For all \emptyset-definable equivalence relation $E \subseteq \prod_i S_i$, let S_E be a new sort and $f_E : \prod S_i \to S_E$ be a new function symbol. Let

$$L^{eq} := L \cup \{S_E, f_E \mid E \text{ is an } \emptyset \text{-definable equivalence relation}\}$$

and

$$T^{eq} := T \cup \{f_E \text{ is onto and } \forall x, y (f_E(x) = f_E(y) \iff xEy)\}.$$

Remark

- Let $M \models T$, then M can naturally be enriched into a model of T^{eq} that we denote M^{eq}.
- We will denote by \mathcal{R} the set of L-sorts. They are called the real sorts.
- The theory T^{eq} eliminates imaginaries.
- We will denote by dcl^{eq} (acl^{eq}) the definable (algebraic) closure in T^{eq}.
Definition

Let T be a theory. For all \emptyset-definable equivalence relation $E \subseteq \prod_i S_i$, let S_E be a new sort and $f_E : \prod S_i \to S_E$ be a new function symbol. Let

$$L_{eq} := L \cup \{S_E, f_E \mid E \text{ is an } \emptyset \text{-definable equivalence relation}\}$$

and

$$T_{eq} := T \cup \{f_E \text{ is onto and } \forall x, y (f_E(x) = f_E(y) \leftrightarrow x Ey)\}.$$

Proposition

A theory T (with two constants) eliminates imaginaries if and only if for all $M \models T$ and $e \in M_{eq}$, there exists a tuple $a \in M$ such that

$$e \in \text{dcl}_{eq}(a) \text{ and } a \in \text{dcl}_{eq}(e).$$
Weak elimination

Definition

A theory T weakly eliminates imaginaries if for all $M \models T$ and $e \in M^{eq}$, there exists a tuple $a \in M$ such that

$$e \in dcl^{eq}(a) \text{ and } a \in acl^{eq}(e).$$
Weak elimination

Definition

A theory T weakly eliminates imaginaries if for all $M \models T$ and $e \in M^\text{eq}$, there exists a tuple $a \in M$ such that

$$e \in \text{dcl}^\text{eq}(a) \text{ and } a \in \text{acl}^\text{eq}(e).$$

Proposition

A theory T eliminates imaginaries if and only if:

1. T weakly eliminates imaginaries.
2. For all $M \models T$, the quotient of M^n by the action of S_n is represented.
Weak elimination

Definition
A theory T weakly eliminates imaginaries if for all $M \models T$ and $e \in M^{eq}$, there exists a tuple $a \in M$ such that

$$e \in \text{dcl}^{eq}(a) \text{ and } a \in \text{acl}^{eq}(e).$$

Proposition
A theory T eliminates imaginaries if and only if:

1. T weakly eliminates imaginaries.
Weak elimination

Definition

A theory T weakly eliminates imaginaries if for all $M \models T$ and $e \in M^{eq}$, there exists a tuple $a \in M$ such that

$$e \in \text{dcl}^{eq}(a) \text{ and } a \in \text{acl}^{eq}(e).$$

Proposition

A theory T eliminates imaginaries if and only if:

1. T weakly eliminates imaginaries.
2. For all $M \models T$, the quotient of M^n by the action of Σ_n is represented.
Weak elimination

Definition
A theory T weakly eliminates imaginaries if for all $M \models T$ and $e \in M^{eq}$, there exists a tuple $a \in M$ such that

$$e \in \operatorname{dcl}^{eq}(a) \text{ and } a \in \operatorname{acl}^{eq}(e).$$

Proposition
A theory T eliminates imaginaries if and only if:
1. T weakly eliminates imaginaries.
2. For all $M \models T$, the quotient of M^n by the action of \mathfrak{S}_n is represented.

Example
- Infinite sets weakly eliminate imaginaries.
Weak elimination

Definition
A theory T weakly eliminates imaginaries if for all $M \models T$ and $e \in M^{eq}$, there exists a tuple $a \in M$ such that

$$e \in dcl^{eq}(a) \text{ and } a \in acl^{eq}(e).$$

Proposition
A theory T eliminates imaginaries if and only if:
1. T weakly eliminates imaginaries.
2. For all $M \models T$, the quotient of M^n by the action of S_n is represented.

Example
- Infinite sets weakly eliminate imaginaries.
- Any strongly minimal theory weakly eliminates imaginaries.
A finite valued function $X \to Y$ is a subset of $X \times Y$ such that for all $x \in X$, the set Y_x is finite.
A finite valued function \(X \rightarrow Y \) is a subset of \(X \times Y \) such that for all \(x \in X \), the set \(Y_x \) is finite.

Proposition

The following are equivalent:

1. \(T \) weakly eliminates imaginaries
A finite valued function $X \to Y$ is a subset of $X \times Y$ such that for all $x \in X$, the set Y_x is finite.

Proposition

The following are equivalent:

1. T weakly eliminates imaginaries
2. Every set definable in models of T has a smallest (algebraically closed) set of definition.
A finite valued function $X \to Y$ is a subset of $X \times Y$ such that for all $x \in X$, the set Y_x is finite.

Proposition

The following are equivalent:

1. T weakly eliminates imaginaries
2. Every set definable in models of T has a smallest (algebraically closed) set of definition.
3. Every finite valued function $M \to M$ definable in $M \models T$ has a smallest (algebraically closed) set of definition.
Covering functions

Let T be an L-theory and $T' \supseteq T$ be an L'-theory. Let $M' \models T'$ and $M \models T$ containing M'.

Assume that every finite valued function f definable in M' is covered by a finite valued function g defined in M.

One would like to deduce elimination of imaginaries in T' from elimination of imaginaries in T.

There are a number of problems:

- No control the domain of f.
- g is not canonical (unless it can somehow be taken minimal).
- The smallest set of definition of g might contain points from $M \setminus M'$.
- Unclear how to recover f from g.
Let T be an \mathcal{L}-theory and $T' \supseteq T_\forall$ be an \mathcal{L}'-theory. Let $M' \models T'$ and $M \models T$ containing M'.

- No control the domain of f.
- g is not canonical (unless it can somehow be taken minimal).
- The smallest set of definition of g might contain points from $M \setminus M'$.
- Unclear how to recover f from g.

Let T be an \mathcal{L}-theory and $T' \supseteq T^\forall$ be an \mathcal{L}'-theory. Let $M' \models T'$ and $M \models T$ containing M'.

Assume that every finite valued function f definable in M' is covered by a finite valued function g defined in M.

Let T be an \mathcal{L}-theory and $T' \supseteq T^\forall$ be an \mathcal{L}'-theory. Let $M' \models T'$ and $M \models T$ containing M'.

Assume that every finite valued function f definable in M' is covered by a finite valued function g defined in M.

One would like to deduce elimination of imaginaries in T' from elimination of imaginaries in T.
Covering functions

- Let T be an \mathcal{L}-theory and $T' \supseteq T_\forall$ be an \mathcal{L}'-theory. Let $M' \models T'$ and $M \models T$ containing M'.
- Assume that every finite valued function f definable in M' is covered by a finite valued function g defined in M.
- One would like to deduce elimination of imaginaries in T' from elimination of imaginaries in T.
- There are a number of problems:
Covering functions

- Let T be an \mathcal{L}-theory and $T' \supseteq T_\forall$ be an \mathcal{L}'-theory. Let $M' \models T'$ and $M \models T$ containing M'.
- Assume that every finite valued function f definable in M' is covered by a finite valued function g defined in M.
- One would like to deduce elimination of imaginaries in T' from elimination of imaginaries in T.
- There are a number of problems:
 - No control the domain of f.
Covering functions

- Let T be an \mathcal{L}-theory and $T' \supseteq T_\forall$ be an \mathcal{L}'-theory. Let $M' \models T'$ and $M \models T$ containing M'.

- Assume that every finite valued function f definable in M' is covered by a finite valued function g defined in M.

- One would like to deduce elimination of imaginaries in T' from elimination of imaginaries in T.

- There are a number of problems:
 - No control the domain of f.
 - g is not canonical (unless it can somehow be taken minimal).
Covering functions

- Let T be an \mathcal{L}-theory and $T' \supseteq T_\forall$ be an \mathcal{L}'-theory. Let $M' \models T'$ and $M \models T$ containing M'.
- Assume that every finite valued function f definable in M' is covered by a finite valued function g defined in M.
- One would like to deduce elimination of imaginaries in T' from elimination of imaginaries in T.
- There are a number of problems:
 - No control the domain of f.
 - g is not canonical (unless it can somehow be taken minimal).
 - The smallest set of definition of g might contain points from $M \setminus M'$.
Let T be an \mathcal{L}-theory and $T' \supseteq T_\forall$ be an \mathcal{L}'-theory. Let $M' \models T'$ and $M \models T$ containing M'.

Assume that every finite valued function f definable in M' is covered by a finite valued function g defined in M.

One would like to deduce elimination of imaginaries in T' from elimination of imaginaries in T.

There are a number of problems:

- No control the domain of f.
- g is not canonical (unless it can somehow be taken minimal).
- The smallest set of definition of g might contain points from $M \setminus M'$.
- Unclear how to recover f from g.
Covering functions

In the case of the field \((\mathbb{R}, 0, 1, +, -, \cdot)\):
Covering functions

In the case of the field \((\mathbb{R}, 0, 1, +, -, \cdot)\):

- Take any finite valued function \(f\) definable in \(\mathbb{R}\). Let \(g\) be the Zariski closure of \(f\). Then \(g\) is a finite valued function definable in \(\mathbb{C}\).
Covering functions

In the case of the field $(\mathbb{R}, 0, 1, +, -, \cdot)$:

- Take any finite valued function f definable in \mathbb{R}. Let g be the Zariski closure of f. Then g is a finite valued function definable in \mathbb{C}.
- Let $A \subseteq \mathbb{C}$ be the the smallest set of definition of g.
Covering functions

In the case of the field \((\mathbb{R}, 0, 1, +, -, \cdot)\):

- Take any finite valued function \(f\) definable in \(\mathbb{R}\). Let \(g\) be the Zariski closure of \(f\). Then \(g\) is a finite valued function definable in \(\mathbb{C}\).
- Let \(A \subseteq \mathbb{C}\) be the the smallest set of definition of \(g\).
- The smallest set of definition of \(g \cap \mathbb{R}\) is \(A \cap \mathbb{R}\).
Covering functions

In the case of the field \((\mathbb{R}, 0, 1, +, -, \cdot)\):

- Take any finite valued function \(f\) definable in \(\mathbb{R}\). Let \(g\) be the Zariski closure of \(f\). Then \(g\) is a finite valued function definable in \(\mathbb{C}\).
- Let \(A \subseteq \mathbb{C}\) be the smallest set of definition of \(g\).
- The smallest set of definition of \(g \cap \mathbb{R}\) is \(A \cap \mathbb{R}\).
- \(f\) can be recovered from \(g \cap \mathbb{R}\) using the order and the fact that every definable \(X \subseteq \mathbb{R}\) has a smallest subset of definition.
Covering functions

In the case of the field \((\mathbb{R}, 0, 1, +, −, \cdot)\):

- Take any finite valued function \(f\) definable in \(\mathbb{R}\). Let \(g\) be the Zariski closure of \(f\). Then \(g\) is a finite valued function definable in \(\mathbb{C}\).
- Let \(A \subseteq \mathbb{C}\) be the the smallest set of definition of \(g\).
- The smallest set of definition of \(g \cap \mathbb{R}\) is \(A \cap \mathbb{R}\).
- \(f\) can be recovered from \(g \cap \mathbb{R}\) using the order and the fact that every definable \(X \subseteq \mathbb{R}\) has a smallest subset of definition.

Proposition (Hrushovski-Martin-R., 2014)

Let \(T'\) be a theory of fields such that, for all \(M \models T'\) and \(A \subseteq M\):

Then \(T\) eliminates imaginaries.
Covering functions

In the case of the field \((\mathbb{R}, 0, 1, +, -, \cdot)\):

- Take any finite valued function \(f\) definable in \(\mathbb{R}\). Let \(g\) be the Zariski closure of \(f\). Then \(g\) is a finite valued function definable in \(\mathbb{C}\).
- Let \(A \subseteq \mathbb{C}\) be the the smallest set of definition of \(g\).
- The smallest set of definition of \(g \cap \mathbb{R}\) is \(A \cap \mathbb{R}\).
- \(f\) can be recovered from \(g \cap \mathbb{R}\) using the order and the fact that every definable \(X \subseteq \mathbb{R}\) has a smallest subset of definition.

Proposition (Hrushovski-Martin-R., 2014)

Let \(T'\) be a theory of fields such that, for all \(M \models T'\) and \(A \subseteq M\):

1. \(\text{dcl}(A) = \text{acl}(A) \subseteq \overline{A}^{\text{alg}}\);

Then \(T\) eliminates imaginaries.
Covering functions

In the case of the field \((\mathbb{R}, 0, 1, +, −, \cdot)\):

- Take any finite valued function \(f\) definable in \(\mathbb{R}\). Let \(g\) be the Zariski closure of \(f\). Then \(g\) is a finite valued function definable in \(\mathbb{C}\).
- Let \(A \subseteq \mathbb{C}\) be the the smallest set of definition of \(g\).
- The smallest set of definition of \(g \cap \mathbb{R}\) is \(A \cap \mathbb{R}\).
- \(f\) can be recovered from \(g \cap \mathbb{R}\) using the order and the fact that every definable \(X \subseteq \mathbb{R}\) has a smallest subset of definition.

Proposition (Hrushovski-Martin-R., 2014)

Let \(T'\) be a theory of fields such that, for all \(M \models T'\) and \(A \subseteq M\):

1. \(\text{dcl}(A) = \text{acl}(A) \subseteq \overline{A}^{\text{alg}}\);
2. Every definable \(X \subseteq M\) has a smallest subset of definition.

Then \(T\) eliminates imaginaries.
Covering functions

In the case of the field \((\mathbb{R}, 0, 1, +, -, \cdot)\):

- Take any finite valued function \(f\) definable in \(\mathbb{R}\). Let \(g\) be the Zariski closure of \(f\). Then \(g\) is a finite valued function definable in \(\mathbb{C}\).
- Let \(A \subseteq \mathbb{C}\) be the the smallest set of definition of \(g\).
- The smallest set of definition of \(g \cap \mathbb{R}\) is \(A \cap \mathbb{R}\).
- \(f\) can be recovered from \(g \cap \mathbb{R}\) using the order and the fact that every definable \(X \subseteq \mathbb{R}\) has a smallest subset of definition.

Proposition (Hrushovski-Martin-R., 2014)

Let \(T'\) be a theory of fields such that, for all \(M \models T'\) and \(A \subseteq M\):

1. \(\text{dcl}(A) = \text{acl}(A) \subseteq \overline{A}^{\text{alg}}\);
2. Every definable \(X \subseteq M\) has a smallest subset of definition.

Then \(T\) eliminates imaginaries.

Remark

Hypothesis 1 holds in \(\mathbb{Q}_p\) but not hypothesis 2 (in the language of rings).
Covering functions

Proposition (Hrushovski-Martin-R., 2014)

Let T be an \mathcal{L}-theory that eliminates quantifiers and imaginaries and $T' \supseteq T_\forall$ an \mathcal{L}'-theory.

Then T' eliminates imaginaries.
Proposition (Hrushovski-Martin-R., 2014)
Let T be an \mathcal{L}-theory that eliminates quantifiers and imaginaries and $T' \supseteq T_\forall$ an \mathcal{L}'-theory. Assume that, for all $M' \models T'$, $M \models T$ containing M' and $A \subseteq M'$:

1. $dcl_{\mathcal{L}'}(A) = acl_{\mathcal{L}'}(A) \subseteq acl_{\mathcal{L}}(A)$;
2. Every definable $X \subseteq M'$ has a smallest subset of definition;
3. For all $e \in dcl_{\mathcal{M}}(M')$, there exists $e' \in M'$ such that for all $s \in \text{Aut}(M')$ stabilising M' globally, $(e) = e$ if and only if $(e') = e'$;
4. Assume $A = acl_{\mathcal{L}'}(A)$ and let $p \in S_{\mathcal{L}'}^1(A)$. Then there exists $\tilde{p} \in S_{\mathcal{L}'}^1(M)$ definable over A such that $p \cup \tilde{p} \mid M'$ is consistent.

Then T' eliminates imaginaries.
Proposition (Hrushovski-Martin-R., 2014)

Let T be an \mathcal{L} -theory that eliminates quantifiers and imaginaries and $T' \supseteq T_\forall$ an \mathcal{L}'-theory. Assume that, for all $M' \models T'$, $M \models T$ containing M' and $A \subseteq M'$:

1. $\text{dcl}_{\mathcal{L}'}(A) = \text{acl}_{\mathcal{L}'}(A) \subseteq \text{acl}_{\mathcal{L}}(A)$;

Then T' eliminates imaginaries.
Covering functions

Proposition (Hrushovski-Martin-R., 2014)

Let T be an \mathcal{L} -theory that eliminates quantifiers and imaginaries and $T' \supseteq T_\forall$ an \mathcal{L}'-theory. Assume that, for all $M' \models T'$, $M \models T$ containing M' and $A \subseteq M'$:

1. $\text{dcl}_{\mathcal{L}'}(A) = \text{acl}_{\mathcal{L}'}(A) \subseteq \text{acl}_{\mathcal{L}}(A)$;
2. Every definable $X \subseteq M'$ has a smallest subset of definition;

Then T' eliminates imaginaries.
Proposition (Hrushovski-Martin-R., 2014)

Let T be an \mathcal{L}-theory that eliminates quantifiers and imaginaries and $T' \supseteq T_\forall$ an \mathcal{L}'-theory. Assume that, for all $M' \models T'$, $M \models T$ containing M' and $A \subseteq M'$:

1. $\text{dcl}_{\mathcal{L}'}(A) = \text{acl}_{\mathcal{L}'}(A) \subseteq \text{acl}_{\mathcal{L}}(A)$;
2. Every definable $X \subseteq M'$ has a smallest subset of definition;
3. For all $e \in \text{dcl}_M(M')$, there exists $e' \in M'$ such that for all $\sigma \in \text{Aut}(M)$ stabilising M' globally,

$$\sigma(e) = e \text{ if and only if } \sigma(e') = e';$$

Then T' eliminates imaginaries.
Proposition (Hrushovski-Martin-R., 2014)

Let T be an \mathcal{L}-theory that eliminates quantifiers and imaginaries and $T' \supseteq T_\forall$ an \mathcal{L}'-theory. Assume that, for all $M' \models T'$, $M \models T$ containing M' and $A \subseteq M'$:

1. $\text{dcl}_{\mathcal{L}'}(A) = \text{acl}_{\mathcal{L}'}(A) \subseteq \text{acl}_{\mathcal{L}}(A)$;
2. Every definable $X \subseteq M'$ has a smallest subset of definition;
3. For all $e \in \text{dcl}_M(M')$, there exists $e' \in M'$ such that for all $\sigma \in \text{Aut}(M)$ stabilising M' globally,
 \[\sigma(e) = e \text{ if and only if } \sigma(e') = e'; \]
4. Assume $A = \text{acl}_{\mathcal{L}'}(A)$ and let $p \in S^{{\mathcal{L}'}_1}(A)$. Then there exists $\tilde{p} \in S^{{\mathcal{L}}_1}(M)$ definable over A such that $p \cup \tilde{p}|_{M'}$ is consistent.

Then T' eliminates imaginaries.
Proposition

Let T_i be an \mathcal{L}_i-theory that eliminates quantifiers and imaginaries and $T' \supseteq \bigcup_i T_i \forall$ an \mathcal{L}'-theory. Assume that, for all $M' \models T'$, $M_i \models T_i$ containing M' and $A \subseteq M'$:

1. $dcl_{\mathcal{L}'}(A) = acl_{\mathcal{L}'}(A) \subseteq acl_{\mathcal{L}_i}(A)$;
2. Every definable $X \subseteq M'$ has a smallest subset of definition;
3. For all $e \in dcl_{M_i}(M')$, there exists $e' \in M'$ such that for all $\sigma \in \text{Aut}(M_i)$ stabilising M' globally,
 $$\sigma(e) = e \text{ if and only if } \sigma(e') = e';$$
4. Assume $A = acl_{\mathcal{L}'}(A)$ and let $p \in S^L_1(A)$. Then there exists $\tilde{p}_i \in S^L_1(M_i)$ definable over A such that $p \cup \bigcup_i \tilde{p}_i|_{M'}$ is consistent.

Then T' weakly eliminates imaginaries.
Some results

▸ All the imaginaries in \mathbb{R} come from ACF (and hence they can be eliminated).

▸ All the imaginaries in real closed valued fields come from ACVF (whose imaginaries were described by Haskell, Hrushovski and Macpherson).

▸ All the imaginaries in \mathbb{Q}_p come from ACVF.

▸ All the imaginaries in $\prod_{\mathbb{Q}_p/U}$ come from ACVF.
Some results

- All the imaginaries in \mathbb{R} come from ACF (and hence they can be eliminated).
Some results

- All the imaginaries in \mathbb{R} come from ACF (and hence they can be eliminated).
- All the imaginaries in real closed valued fields come from ACVF (whose imaginaries were described by Haskell, Hrushovski and Macpherson).
Some results

- All the imaginaries in \mathbb{R} come from ACF (and hence they can be eliminated).
- All the imaginaries in real closed valued fields come from ACVF (whose imaginaries were described by Haskell, Hrushovski and Macpherson).
- All the imaginaries in \mathbb{Q}_p come from ACVF.
Some results

- All the imaginaries in \mathbb{R} come from ACF (and hence they can be eliminated).
- All the imaginaries in real closed valued fields come from ACVF (whose imaginaries were described by Haskell, Hrushovski and Macpherson).
- All the imaginaries in \mathbb{Q}_p come from ACVF.
- All the imaginaries in $\prod_p \mathbb{Q}_p / \mathcal{U}$ come from ACVF.
Adding new functions

If T is an L-theory, we may want to form $T \cup \{\}$ -theory of models of T with an automorphism.

We will mainly be interested in T_A, the model companion of T, if it exists (and from now on, we will assume it exists).

Proposition (Chatzidakis-Pillay, 1998)
Assume T is strongly minimal, then T_A weakly eliminates imaginaries.

Proposition (Hrushovski, 2012)
Let T be a stable theory that eliminates imaginaries. Assume that T has 3-uniqueness, then T_A eliminates imaginaries.
Adding new functions

- If T is an \mathcal{L}-theory, we may want to form T_{σ} the $\mathcal{L} \cup \{\sigma\}$-theory of models of T with an automorphism.
Adding new functions

- If T is an \mathcal{L}-theory, we may want to form T_σ the $\mathcal{L} \cup \{\sigma\}$-theory of models of T with an automorphism.
- We will mainly be interested in T_A, the model companion of T_σ, if it exists (and from now on, we will assume it exists).
Adding new functions

- If T is an \mathcal{L}-theory, we may want to form T_σ the $\mathcal{L} \cup \{\sigma\}$-theory of models of T with an automorphism.
- We will mainly be interested in T_A, the model companion of T_σ, if it exists (and from now on, we will assume it exists).

Proposition (Chatzidakis-Pillay, 1998)

Assume T is strongly minimal, then T_A weakly eliminates imaginaries.
Adding new functions

> If T is an \mathcal{L}-theory, we may want to form T_σ the $\mathcal{L} \cup \{\sigma\}$-theory of models of T with an automorphism.

> We will mainly be interested in T_A, the model companion of T_σ, if it exists (and from now on, we will assume it exists).

Proposition (Chatzidakis-Pillay, 1998)
Assume T is strongly minimal, then T_A weakly eliminates imaginaries.

Proposition (Hrushovski, 2012)
Let T be a stable theory that eliminates imaginaries. Assume that T has 3-uniqueness, then T_A eliminates imaginaries.
Let T be some \mathcal{L}-theory, f be a new function symbol and $T' \supseteq T$ be an $\mathcal{L} \cup \{f\}$-theory.
Adding new functions

- Let T be some \mathcal{L}-theory, f be new function symbol and $T' \supseteq T$ be an $\mathcal{L} \cup \{f\}$-theory.
- Let $M \models T'$. We define:

$$\nabla_\omega : \quad S^\mathcal{L}_x (M) \quad \rightarrow \quad S^\mathcal{L}_{x,\omega} (M)$$

$$\text{tp}_{\mathcal{L}'} (a/M) \quad \mapsto \quad \text{tp}_\mathcal{L} (f_\omega (a)/M)$$

where $f_\omega (a) = (f^n (a))_{n \in \mathbb{N}}$.

- We assume that ∇_ω is injective (this is a form of quantifier elimination).
- That does not, in general, hold in T_A.
- It does hold in differentially closed fields of characteristic zero and separably closed fields of finite imperfection degree (and their valued equivalents).
Adding new functions

- Let T be some \mathcal{L}-theory, f be new function symbol and $T' \supseteq T$ be an $\mathcal{L} \cup \{f\}$-theory.
- Let $M \models T'$. We define:

\[
\nabla_\omega : \quad S^\mathcal{L'}_x(M) \rightarrow S^\mathcal{L}_{x_\omega}(M)
\]
\[
\text{tp}_{\mathcal{L}'}(a/M) \rightarrow \text{tp}_{\mathcal{L}}(f_\omega(a)/M)
\]

where $f_\omega(a) = (f^n(a))_{n \in \mathbb{N}}$.

- We assume that ∇_ω is injective (this is a form of quantifier elimination).
Adding new functions

- Let T be some \mathcal{L}-theory, f be new function symbol and $T' \supseteq T$ be an $\mathcal{L} \cup \{f\}$-theory.
- Let $M \models T'$. We define:

$$
\nabla_\omega : \quad S_{x}^{\mathcal{L}'}(M) \rightarrow S_{x_\omega}^{\mathcal{L}}(M)
$$

$$
tp_{\mathcal{L}'}(a/M) \rightarrow tp_{\mathcal{L}}(f_\omega(a)/M)
$$

where $f_\omega(a) = (f^n(a))_{n \in \mathbb{N}}$.
- We assume that ∇_ω is injective (this is a form of quantifier elimination).
- That does not, in general, hold in T_A.

Adding new functions

- Let T be some \mathcal{L}-theory, f be new function symbol and $T' \supseteq T$ be an $\mathcal{L} \cup \{f\}$-theory.
- Let $M \models T'$. We define:

$$
\nabla_\omega : \quad S^\mathcal{L}_x (M) \quad \rightarrow \quad S^\mathcal{L}_{x\omega} (M) \\
\text{tp}_{\mathcal{L}'} (a/M) \quad \mapsto \quad \text{tp}_{\mathcal{L}} (f_\omega (a)/M)
$$

where $f_\omega (a) = (f^n (a))_{n \in \mathbb{N}}$.

- We assume that ∇_ω is injective (this is a form of quantifier elimination).
- That does not, in general, hold in T_A.
- It does hold in differentially closed fields of characteristic zero and separably closed fields of finite imperfection degree (and their valued equivalents).
Proposition (Hrushovski, 2014)

Let T be a theory such that:

1. For every definable set X there exists an $L_{eq}(acl_{eq}(⌜X⌝))$-definable type p which is consistent with X.
2. Let $A = acl_{eq}(A) \subseteq M_{eq} \models T_{eq}$. If $p \in S(M)$ is $L_{eq}(A)$-definable, then p is $L(R(A))$-definable.

Then T weakly eliminates imaginaries.
Proposition (Hrushovski, 2014)

Let T be a theory such that:

1. For every definable set X there exist an $L^\text{eq}(\text{acl}^\text{eq}('X'))$-definable type p which is consistent with X.

Then T weakly eliminates imaginaries.
Proposition (Hrushovski, 2014)

Let T be a theory such that:

1. For every definable set X there exist an $\mathcal{L}^{\text{eq}}(\text{acl}^{\text{eq}}(\langle X \rangle))$-definable type p which is consistent with X.

2. Let $A = \text{acl}^{\text{eq}}(A) \subseteq M^{\text{eq}} \models T^{\text{eq}}$. If $p \in S(M)$ is $\mathcal{L}^{\text{eq}}(A)$-definable, then p is $\mathcal{L}(\mathcal{R}(A))$-definable.

Then T weakly eliminates imaginaries.
Proposition (Hrushovski, 2014)

Let T be a theory such that:

1. For every definable set X there exist an $\mathcal{L}^{\text{eq}}(\text{acl}^{\text{eq}}('X'))$-definable type p which is consistent with X.

2. Let $A = \text{acl}^{\text{eq}}(A) \subseteq M^{\text{eq}} \models T^{\text{eq}}$. If $p \in S(M)$ is $\mathcal{L}^{\text{eq}}(A)$-definable, then p is $\mathcal{L}(\mathcal{R}(A))$-definable.

Then T weakly eliminates imaginaries.

Remark

It suffices to prove hypothesis 1 in dimension 1.
In the case of differentially closed fields \((K, 0, 1, +, -, \cdot, \delta)\):
Prolongations and canonical basis

In the case of differentially closed fields \((K, 0, 1, +, -, \cdot, \delta)\):
- Hypothesis 1 is true because \(DCF_0\) is stable.
In the case of differentially closed fields \((K, 0, 1, +, -, \cdot, \delta)\):

- Hypothesis 1 is true because \(DCF_0\) is stable.
- Let \(M \models DCF_0\) and \(p \in S^{L_\emptyset}(M)\).
In the case of differentially closed fields \((K, 0, 1, +, -, \cdot, \delta)\):

- Hypothesis 1 is true because \(DCF_0\) is stable.
- Let \(M \models DCF_0\) and \(p \in S^{\mathcal{L}\delta}(M)\).
- Let \(A = acl^eq(A) \subseteq M^eq\) and assume \(p\) is \(\mathcal{L}_\delta^eq(A)\)-definable. By elimination of imaginaries in ACF, the canonical basis of \(\nabla\omega(p)\) is contained in \(K(A)\). In particular, \(p\) is \(\mathcal{L}_\delta(K(A))\)-definable.
Prolongations and canonical basis

If T is not stable, the previous strategy has a serious flaw:
Prolongations and canonical basis

If T is not stable, the previous strategy has a serious flaw:

- If p is $\mathcal{L}'(M)$-definable, there is no reason for $\nabla_\omega(p)$ to be $\mathcal{L}(M)$-definable.
If T is not stable, the previous strategy has a serious flaw:

- If p is $\mathcal{L}'(M)$-definable, there is no reason for $\nabla_\omega(p)$ to be $\mathcal{L}(M)$-definable.
- Let $\phi(x_\omega; y)$ be an \mathcal{L}-formula then

\[
\phi(x_\omega; a) \in \nabla_\omega(p) \text{ if and only if } M \models d_p x \phi(f_\omega(x); a).
\]
Prolongations and canonical basis

If T is not stable, the previous strategy has a serious flaw:

- If p is $\mathcal{L}'(M)$-definable, there is no reason for $\nabla_\omega(p)$ to be $\mathcal{L}(M)$-definable.

- Let $\phi(x_\omega; y)$ be an \mathcal{L}-formula then

 $$\phi(x_\omega; a) \in \nabla_\omega(p) \text{ if and only if } M \models d_p x \phi(f_\omega(x); a).$$

- Let $a \models \nabla_\omega(p)$ we have:

 $$\phi(a; M) = d_p x \phi(f_\omega(x); M).$$

 $\phi(a; M)$ externally \mathcal{L}-definable = $\phi(f_\omega(x); M)$ \mathcal{L}'-definable.
If T is not stable, the previous strategy has a serious flaw:

- If p is $\mathcal{L}'(M)$-definable, there is no reason for $\nabla_\omega(p)$ to be $\mathcal{L}(M)$-definable.

- Let $\phi(x_\omega; y)$ be an \mathcal{L}-formula then

\[\phi(x_\omega; a) \in \nabla_\omega(p) \text{ if and only if } M \models d_p x \phi(f_\omega(x); a). \]

- Let $a \models \nabla_\omega(p)$ we have:

\[
\phi(a; M) = d_p x \phi(f_\omega(x); M)
\]

and we wish this set to be \mathcal{L}-definable.
NIP theories

Definition

Let $\phi(x;y)$ be a formula and M a structure, we say that ϕ has the independence property in M if there exists $(a_n)_{n \in \mathbb{N}}$ and $(b_X)_{X \subseteq \mathbb{N}}$ such that:

$$M \models \phi(a_n; b_X) \text{ if and only if } n \in X$$

We say that the theory T is NIP (not the independence property) if no formula has the independence property in any model of T.

Example

- All stable theories are NIP.
- All O-minimal theories are NIP.
- ACVF is NIP.
NIP theories

Definition

Let $\phi(x;y)$ be a formula and M a structure, we say that ϕ has the independence property in M if there exists $(a_n)_{n \in \mathbb{N}}$ and $(b_X)_{X \subseteq \mathbb{N}}$ such that:

$$M \models \phi(a_n; b_X) \text{ if and only if } n \in X$$

We say that the theory T is NIP (not the independence property) if no formula has the independence property in any model of T.

Example

- All stable theories are NIP.
NIP theories

Definition

Let $\phi(x;y)$ be a formula and M a structure, we say that ϕ has the independence property in M if there exists $(a_n)_{n \in \mathbb{N}}$ and $(b_X)_{X \subseteq \mathbb{N}}$ such that:

$$M \models \phi(a_n; b_X) \text{ if and only if } n \in X$$

We say that the theory T is NIP (not the independence property) if no formula has the independence property in any model of T.

Example

- All stable theories are NIP.
- All O-minimal theories are NIP.
Definition

Let $\phi(x; y)$ be a formula and M a structure, we say that ϕ has the independence property in M if there exists $(a_n)_{n \in \mathbb{N}}$ and $(b_X)_{X \subseteq \mathbb{N}}$ such that:

$$M \models \phi(a_n; b_X) \text{ if and only if } n \in X$$

We say that the theory T is NIP (not the independence property) if no formula has the independence property in any model of T.

Example

- All stable theories are NIP.
- All O-minimal theories are NIP.
- ACVF is NIP.
Definable types in enrichments of NIP theories

Definition (Stable embeddedness)

Let M be some structure and $A \subseteq M$. We say that A is stably embedded in M if for all formula $\phi(x;y)$ and all $c \in M$, there exists a formula $\psi(x;z)$ such that

$$\phi(A; c) = \psi(A; a)$$

for some tuple $a \in A$.

Proposition (Simon-R., 2015)

Let T be an NIP L-theory and \bar{T} be a complete enrichment of T in a language \bar{L}. Assume that there exists $M \models \bar{T}$ such that $M \models L$ is uniformly stably embedded in every elementary extension. Let X be a set that is both externally L-definable and \bar{L}-definable, then X is L-definable.

In particular, any L-type which is \bar{L}-definable is in fact L-definable.
Definable types in enrichments of NIP theories

Definition (Uniform stable embeddedness)

Let M be some structure and $A \subseteq M$. We say that A is uniformly stably embedded in M if for all formula $\phi(x; y)$, there exists a formula $\psi(x; z)$ such that for all tuple $c \in M$,

$$\phi(A; c) = \psi(A; a)$$

for some tuple $a \in A$.

Proposition (Simon-R., 2015)

Let T be an NIP be an L-theory and \tilde{T} be a complete enrichment of T in a language \tilde{L}. Assume that there exists $M \models \tilde{T}$ such that $M \vert L$ is uniformly stably embedded in every elementary extension.

Let X be a set that is both externally L-definable and \tilde{L}-definable, then X is L-definable.

In particular, any L-type which is \tilde{L}-definable is in fact L-definable.
Definable types in enrichments of NIP theories

Definition (Uniform stable embeddedness)

Let M be some structure and $A \subseteq M$. We say that A is uniformly stably embedded in M if for all formula $\phi(x; y)$, there exists a formula $\psi(x; z)$ such that for all tuple $c \in M$,

$$\phi(A; c) = \psi(A; a)$$

for some tuple $a \in A$.

Proposition (Simon-R., 2015)

Let T be an NIP be an \mathcal{L}-theory and \widetilde{T} be a complete enrichment of T in a language $\widetilde{\mathcal{L}}$. Assume that there exits $M \models \widetilde{T}$ such that $M|_{\mathcal{L}}$ is uniformly stably embedded in every elementary extension.
Definable types in enrichments of NIP theories

Definition (Uniform stable embeddedness)

Let M be some structure and $A \subseteq M$. We say that A is uniformly stably embedded in M if for all formula $\phi(x; y)$, there exists a formula $\psi(x; z)$ such that for all tuple $c \in M$,

$$\phi(A; c) = \psi(A; a)$$

for some tuple $a \in A$.

Proposition (Simon-R., 2015)

Let T be an NIP be an \mathcal{L}-theory and \tilde{T} be a complete enrichment of T in a language $\tilde{\mathcal{L}}$. Assume that there exits $M \models \tilde{T}$ such that $M|_{\mathcal{L}}$ is uniformly stably embedded in every elementary extension. Let X be a set that is both externally \mathcal{L}-definable and $\tilde{\mathcal{L}}$-definable, then X is \mathcal{L}-definable.
Definition (Uniform stable embeddedness)

Let M be some structure and $A \subseteq M$. We say that A is uniformly stably embedded in M if for all formula $\phi(x; y)$, there exists a formula $\psi(x; z)$ such that for all tuple $c \in M$,

$$\phi(A; c) = \psi(A; a)$$

for some tuple $a \in A$.

Proposition (Simon-R., 2015)

Let T be an NIP be an \mathcal{L}-theory and \tilde{T} be a complete enrichment of T in a language $\tilde{\mathcal{L}}$. Assume that there exits $M \models \tilde{T}$ such that $M|_{\mathcal{L}}$ is uniformly stably embedded in every elementary extension.

Let X be a set that is both externally \mathcal{L}-definable and $\tilde{\mathcal{L}}$-definable, then X is \mathcal{L}-definable.

In particular, any \mathcal{L}-type which is $\tilde{\mathcal{L}}$-definable is in fact \mathcal{L}-definable.
Proposition

Let T be some \mathcal{L}-theory that eliminates imaginaries, f be new function symbol and $T' \supseteq T$ be a complete $\mathcal{L} \cup \{f\}$-theory. Assume that:

1. $\Delta^!$ is injective.
2. For every \mathcal{L}'-definable set X there exists an \mathcal{L}-type p which is consistent with X.
3. There exists $M \models \bar{T}$ such that $M \mid L$ is uniformly stably embedded in every elementary extension.

Then T' eliminates imaginaries.
Proposition

Let T be some \mathcal{L}-theory that eliminates imaginaries, f be new function symbol and $T' \supseteq T$ be a complete $\mathcal{L} \cup \{f\}$-theory. Assume that:

1. $\nabla\omega$ is injective.

Then T' eliminates imaginaries.
Proposition

Let T be some \mathcal{L}-theory that eliminates imaginaries, f be new function symbol and $T' \supseteq T$ be a complete $\mathcal{L} \cup \{f\}$-theory. Assume that:

1. ∇_ω is injective.
2. For every \mathcal{L}'-definable set X there exist an $\mathcal{L}^{eq}(\acl^{eq}(\mathcal{L}'X))$-definable \mathcal{L}-type p which is consistent with X.

Then T' eliminates imaginaries.
Proposition

Let T be some \mathcal{L}-theory that eliminates imaginaries, f be a new function symbol and $T' \supseteq T$ be a complete $\mathcal{L} \cup \{f\}$-theory. Assume that:

1. ∇_{ω} is injective.
2. For every $\mathcal{L'}$-definable set X there exist an $\mathcal{L}^{eq}(acl^{eq}(\langle X' \rangle))$-definable \mathcal{L}-type p which is consistent with X.
3. There exists $M \models \tilde{T}$ such that $M|_{\mathcal{L}}$ is uniformly stably embedded in every elementary extension.

Then T' eliminates imaginaries.
Some results II

▸ All the imaginaries in DCF_0 come from ACF (and hence they can be eliminated).

▸ All the imaginaries from separably closed fields (beit with μ-functions or Hassederivations) come from ACF.

▸ All the imaginaries in Scanlon’s theory of differential valued fields come from ACVF.

▸ All the imaginaries from separably closed valued fields come from ACVF.
Some results II

- All the imaginaries in DCF_0 come from ACF (and hence they can be eliminated).
Some results II

- All the imaginaries in DCF_0 come from ACF (and hence they can be eliminated).
- All the imaginaries from separably closed fields (be it with λ-functions or Hasse derivations) come from ACF.
Some results II

- All the imaginaries in DCF_0 come from ACF (and hence they can be eliminated).
- All the imaginaries from separably closed fields (be it with λ-functions or Hasse derivations) come from ACF.
- All the imaginaries in Scanlon’s theory of differential valued fields come from ACVF.
Some results II

- All the imaginaries in DCF_0 come from ACF (and hence they can be eliminated).
- All the imaginaries from separably closed fields (be it with λ-functions or Hasse derivations) come from ACF.
- All the imaginaries in Scanlon’s theory of differential valued fields come from $ACVF$.
- All the imaginaries from separably closed valued fields come from $ACVF$.
Thanks!