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Introduction

• Expansions of (Z,+, 0) versus of (Z,+, 0, <) (or (N,+)) in the
point of view of stability-like properties, definability, decidability.

•• Comparison between expansions of (Z,+, 0, <) and of
(Fp[X ],+, 0), (Fp[X ,X−1],+, 0), (Fp[[X ]],+, 0), · · · .

• • •Analogy between expansions of (Z,+, 0, <) and (R,+, ., 0, 1).



(Z,+, 0) / (Z,+, 0, <)

• (Z,+, 0) is a torsion-free abelian group and |Z/nZ| = n, for each
n ∈ N∗. Define the unary predicate Dn(x) by: ∃y n.y = x .

The theory of (Z,+, 0) admits quantifier-elimination in
{+,−, 0,Dn; n ∈ ω \ {0, 1}}.

The theory of (Z,+, 0) is superstable. (All modules are
stable–definability of types–).
It is not ω-stable:one has an infinite chain of proper definable
sugbroups: n!Z, of finite index in one another.

View now (Z,+, <, 0) as a totally ordered abelian group.
•• (Presburger) The theory of (Z,+, 0, <) admits
quantifier-elimination in {+,−, 0, 1, <,Dn; n ∈ ω \ {0, 1}}.



(Z,+, 0, <) and minimality

In expansions of (N,+, 0) with a predicate, we have the following
phenomenon: [Muchnik-Michaux-Villemaire]
Let A ⊂ Nn, then

A /∈ Def (N,+) iff ∃X ⊂ N (X ∈ Def(N,+,A) & X /∈ Def(N,+)).

; an analogy with o-minimal structures M (e.g. the field of real
numbers), where the structure of definable subsets in Mn is
determined by how the definable subsets of M look like.

; notion of dimension and definition of coset-minimality.



Notion of minimality: Quasi-minimal/Coset-minimal

(Belegradek, Peterzil, Wagner, 2000) M := (M, <, · · · ) is
quasi-o-minimal if in any structure N ≡M, any definable subset
of N is a boolean combination of 0-definable sets and intervals.
Example: (Z,+, 0, <, 1).

(P., Wagner) Let G := (G , ·, 1,≤, ...) be a totally ordered group.
Then G is coset-minimal if every definable subset of G is a finite
union of cosets of definable subgroups intersected with intervals.

• (P., Wagner) Let G be coset-minimal, then one can identify its
reduct as a pure ordered group.
Namely, assume it is discretely ordered, then G is abelian and there
is a chain of convex subgroups {0} = G0 < G1 < · · · < Gk+1 = G
with G1 ≡ (Z,+, 0, <) and either Gi+1/Gi ≡ (Q,+, 0, <) or
Gi+1/Gi ≡ (Z,+, 0, <), 1 ≤ i ≤ k .



Note that the group (Z× Z,+,≤, c1, c2, f ), where
f ((x , y)) = (0, x) is a coset-minimal group which does not satisfy
the exchange property.

•• (P., Wagner) If M is group, then it is quasi-o-minimal iff the
theory of M is coset-minimal (possibly after adding finitely many
constants).
(In that case, one can show that in the above description of
definable subsets, one can assume that all cosets are of the form:
cosets of n.M, for a certain n, and these subgroups are of finite
index in M.)



Decidability proven using automata theory of expansions of
(Z,+, 0, <)

One way to prove decidability for expansions of (Z,+, 0, <) is to
use automata theory.

The strategy is to link definability in expansions of (N,+, 0) with
recognisability by a finite automata (R. Buchi,...) and to use the
following result of Kleene:

[Kleene] The emptiness problem for finite automaton is decidable.



General set-up (B. Hodgson,...)

More generally, take M a first-order (countable) L-structure with
L be a finite relational language. Then M is finite automaton
presentable (for short, FA-presentable) if

if the elements of the domain can be represented by (finite) words
in a regular language D ⊂ A∗ over some finite alphabet A

in such a way that for each relation R of L, we have some finite
automaton which recognizes the graph of R.



Example

Take (N,+) the natural numbers. Code any n ∈ N by its binary
expansion n =

∑s
i=0 2i .εi , with εi ∈ A := {0, 1}.

In this case, D is the set of finite words in 0, 1 ending with a 1,
the empty word representing 0.

Let n ∈ N, then V2(n) is the highest power of 2 that divides n.
So in the binary expansion of n, V2(n) is the smallest power of 2
that occurs with a non-zero coefficient.

Using finite automata theory, one can prove:
[Büchi (1960), McNaughton, Bruyère (1985)]
The theory of (N,+,V2) is decidable;
any subset of Nn is definable if and only if it FA-recognizable.
Moreover a definable subset of Nn is ∀∃∀-definable (Villemaire).



One constructs three automata.

• One to recognise the relation {(a, b, a + b) : a, b ∈ N} and

• another one to recognise the relation {(a, b) : a < b}.

• another one to recognise the relation
{(a,V2(a)) : a, b ∈ N \ {0}}.



Automaton for V2

The following automaton recognizes the graph of the function V2.
The letter x designates any letter of our alphabet A = {0, 1}.

i q

(0, 0)

(1, 1)

(x , 0)

Figure: Büchi automaton for V2 (accepting paths)



Automaton for ·2

i

0 1

(0,0) (1,0)

(0, 0)

(1, 0)

(1, 1)
(0, 1)

Figure: Büchi automaton for the graph of the function ·2, namely it
accepts all tuples of the form {(u, 0u)}



However...

[Nies] FA-presentability is a strong condition on the structure:

FA-presentable groups are locally abelian-by-finite,

FA-presentable rings are locally finite and

FA-presentable rings without zero-divisors are the finite fields.

[Hodgson,...] Any (countable) FA-presentable L-structure is
decidable.
(He also considered L-structures whose elements can be
represented by infinite words ; finite automaton accepting infinite
words).



Undecidability of expansions of (N,+,V2)

The theory of (N,+,V2,V3) is undecidable (R. Villemaire).

The theory of (N,+,V2,P3) is also undecidable (A. Bès).

Both Villemaire’s and Bès’ results rely on a slight generalization of
a result of C. Elgot and M. Rabin on weak monadic second-order
theory of (N,Succ).

Let g be a strictly increasing function from P2 to P2 with the
property that g skips at least one value between two consecutive
arguments:

∀n∀m (n < m → 2.g(n) < g(m)).

Then Th(N,+,V2, n 7→ g(n)) is undecidable. (One defines
addition and multiplication on the exponents of powers of 2.)



Decidable expansions of polynomial rings

This strategy can be applied to other additive reducts of Euclidean
rings. For instance,

On Fq[X ], we have a partial order ≺ induced by the degree
function and let PX be a unary predicate for the powers of X

[A. Sirokofskich, 2010] The structure
(Fq[X ],+,PX ,≺, ·u; u ∈ Fq[X ]) is model-complete.

Let u ∈ Fq[X ] \ Fq, we define the unary function Vu(x) sending x
to the highest power of u dividing it.

[L. Waxweiler, 2009] The theory of
(Fq[X ],+, 0,≺,Vu, .C ;C ∈ Fq[X ]), where .C denotes the scalar
multiplication by C , is decidable and have a bound (∀∃∀) on the
complexity of definable sets.

Euclidean rings setting:-joint work with M. Rigo and L. Waxweiler



Expansions of Fp[[X ]] (Joint work with Bélair and Gélinas).

One can use finite automata working on infinite words.

Let F := (Fp[[X ]],+, 0,VX , λX ,≺, .C ;C ∈ Fq[X ])

Let P ∈ Fq[[X ]], we define the unary function VP(x) sending x to
the highest power of P dividing it.

THEOREM (Bélair, Gélinas, P.)

The theory of F is decidable and Def (F) =
⋃

n Rec(Aωn ).



NIP

Let M be an L-structure and let φ(x ; ȳ) be an L-formula. Then
φ has the independence property (IP) (in M)
if for every k there exist b0, · · · , bk−1 ∈ M such that for every
subset E of {0, · · · , k − 1} there exists ā(E ) ∈ M such that the
following equivalence holds:

` ∈ E iff M |= φ(b`; ā(E )). (?).

If no formula has (IP), then one says that M is NIP.

(Z,+, 0, <,V2) has a formula with (IP), namely: 2` ∈ n if
∃u∃v n = u + 2` + v , where V2(u) = V2(n), λ2(u) < 2`,
2` < V2(v), λ2(v) = λ2(n) (with special cases for the extremities).

Observation: Let T be the theory of a coset-minimal group. Then
T has NIP.



Observation: Let T be the theory of a coset-minimal group. Then
T has NIP.

Proof: Let G |= T . By the way of contradiction, we may assume
that a formula witnessing (IP) is of the form ψ(x ; y1, · · · , yN).
For every k , there would exist b0, · · · , bk−1 ∈ G such that que for
every subset A of {0, · · · , k − 1} there exist āA ∈ GN such that

i ∈ A iff G |= φ(bi ; āA).

The definable set φ(G , ȳ) is a finite union of cosets of n.G
intersected with intervals, and the number of intervals is bounded
by `, with n and ` independent from ȳ . Let f := [G : nG ].
Consider k := (2.`+ 1).n. By the pigeon-hole principle, in any
finite set of elements b0, · · · , bk−1 ∈ G , there are at least 2.`+ 1
of them in the same coset of n.G , among the indices of this
subset, one can find a subset of `+ 1 elements which cannot be
selected using ` intervals.



Ordered modules

Question (Chernikov,Hils): Are there ordered modules whose
theories are not NIP?

(P. Glivicky, P. Pudlak (2017)) There exists an ordered module M
over a ring of the form Z[a, b] in which one can define
multiplication on a non-standard interval.
Therefore the theory ofM is not NIP and its theory is undecidable.

(Penzin, 1973) Penzin has previously showed that for some n > 1,
the universal theory of (Z,+, 0, <, ·d1, · · · , ·dn) is undecidable.

[Hieronymi, Tychonievich, 2014] One can define multiplication in
(R,+, 0, <, α.N, β.N, γ.N), where α, β, γ are Q-linearly
independent.



Definability in expansions of (Z,+, <)

Recall that V2(n) is the highest power of 2 that divides n, n ∈ N.

Let P2 be the set of powers of 2 and denote the corresponding
unary predicate by the same letter,
then (Z,+, 0, <,P2) is a reduct of (Z,+, 0, <,V2): we have

P2(x) iff V2(x) = x .

[van den Dries, 1985] The structure (Z,+,−, 0, <,P2), is
model-complete and admits quantifier elimination in
{+,−, 0, 1,≡n; n ∈ N∗, λ2}, where λ2(x) is the largest power of 2
that occurs in the binary expansion of n.

(Byproduct of the methods used for his proof of the
model-completeness of (R,+, ., 0, 1, 2Z)).



Mann property

Let K be a field of characteristic 0 and G a multiplicative
subgroup of (K ∗, ·, 1).
Then G has the Mann property if every equation of the form

n∑
i=1

ai .gi = 1,

ai ∈ Q, has only finitely many non-degenerate solutions in G .

(g1, · · · , gn) is non-degenerate if for any proper subset J of indices,∑
j∈J aj .gj 6= 0.

; Mann axioms

Examples: (Mann) If K = C and G is the subgroup U of roots of
unity, then (C,U) has the Mann property.

Let a ∈ R>0, then the subgroup aZ has the Mann property.



Mann property

(van der Poorten, Schlickewei, 1991) Let K be a field of
characteristic 0 and G a multiplicative subgroup of (K ∗, ·, 1).
Suppose that G is of finite rank i.e. dimQG ⊗Z Q is finite. Then G
has the Mann property.

1 (C,U), (R,U), where U is the group of roots of unity in C
(Zilber, 1993, 2003)

2 (R, < 2Z, 3Z >) (Gunaydin, van den Dries, 2006)

3 (Qp, (1 + p)Z) (Mariaule, 2016)

In that last case, study of: ; (Z,+, vp), namely induced
structure on the value group of Qp.



Mann property-dense case

Let Γ be a subgroup of R>0 with the Mann property.

(van den Dries, Gunaydin, 2006) Let K be a real closed ordered
field, let G be a dense subgroup of K>0, and let a group
homomorphism γ → γ′ : Γ→ G .

Then (K ,G , (γ′)γ∈Γ) ≡ (R, Γ, (γ)γ∈Γ) if and only if

(i) (G , (γ′)γ∈Γ) ≡ (Γ, (γ)γ∈Γ) as ordered groups and;

for all a1, ..., an ∈ Z and γ1, ..., γn ∈ Γ

a1γ1 + ...+ anγn > 0↔ a1γ
′
1 + ...+ anγ

′
n > 0 ;

(ii) (K ,G , (γ′)γ∈Γ satisfies the Mann axioms of Γ.



Valued groups

Let p be a prime number bigger than 2 and let
vp : (Z,+, 0)→ (N,≤) : z → n), where pn is the highest power of
p dividing n.

(Guignot/ Mariaule, 2016) The theory of (Z,+, vp) is NIP and is
model-complete (and admits quantifier-elimination).

One can also consider the one-sorted structure (Z,+, |p), where
a|pb iff vp(a) ≤ vp(b) (D’Elbée).

(Note that NIP-(ordered) groups/dp-minimal groups have been
studied in details by Aschenbrenner, Dolich, Haskell,
Macpherson,Starchenko/Simon/...).

Let us consider expansions of (Z,+, 0).



Expansions of (Z,+, 0)

Recall that the theory of the free non abelian group F2 on two
generators is stable (Z. Sela, 2013).

Question (Pillay): which kind of structure the free non abelian
group F2 on two generators can induce on its proper definable
subgroups? in particular on its centralisers?)

(Palacin-Sklinos 2017/Poizat) The theory of (Z,+, 0, 1,P2) is
superstable of U-rank ω. Moreover, there are no proper
superstable expansions of (Z,+, 0) of finite U-rank.

(Palacin-Sklinos) The same proof works for aN, a ∈ N, a > 2, also
for fast growing sequences like (n!)n∈ω∗ .

Method of P-S: Casanovas-Ziegler result on stable expansions by a
predicate.



Question: for which sequences R, the expansion (Z,+,R) remains
stable?

(Kaplan, Shelah 2017) Let P be the set of prime numbers. Then,
assuming Dickson conjecture (DC), the theory of
(Z,+, 0, 1,P ∪ −P) is decidable, not stable but supersimple of
rank 1.
In fact, the theory of (Z,+, 0, 1,P ∪ −P) admits quantifier
elimination in {+,−, 0, 1,P,Dn,Qn; n ∈ ω∗, n ≥ 2}, where P(x)
iff x ∈ P ∪ −P and Qn is defined as (Dn(x) & P( xn )).

DC (1904): Let k ≥ 1 and f̄ = 〈fi : i < k〉 where fi (x) = aix + bi
with ai , bi non-negative integers, ai ≥ 1 for all i < k . Assume that:
there does not exist any integer n > 1 dividing all the products∏

i<k fi (s) for every (non-negative) integer s.
Then there exist infinitely many natural numbers m such that
fi (m) is prime for all i < k.



Note that one can define N in (Z,+, 0,P): any natural number
bigger than 1 is a sum of a bounded number of primes.
This is due to the fact that σ(P + P) > 0, where for R ⊂ N,

σ(R) = infn→+∞
|R ∩ [0 n]|

n
.

(Bateman, Jockusch, Woods, 1993) Under (DC), the theory of
(Z,+, 0, 1, <,P) is undecidable.

They show that {n2 + n : n ∈ ω} is definable in (N,+,P) and
from this subset, one can define the graph of the square function
and so the multiplication.

It gives an example of a unary predicate R such that (Z,+, 0,R) is
decidable, whereas (Z,+, 0, <,R) is undecidable.



Geometrically sparse sequences

(Conant) A subset A ⊂ R+ is geometric if { ab : a, b ∈ A; b ≤ a} is
closed and discrete. A sequence R ⊂ N is geometrically sparse if
there exists a function f : R → R+ such that f (R) is geometric
and supr∈R |r − f (R)| <∞.

The theory of (Z,+, 0, 1,R) is superstable of U-rank ω, for any
geometrically sparse sequence R.



Sparse sequences

(Lambotte, P.) Let R := (rn)n≥0, with r0 = 1, be a strictly
increasing sequence such that there exists θ > 1 such that
limn→+∞

rn
θn exists and is nonzero. Moreover one assumes that R is

given by a linear recurrence whose characteristic polynomial is the
minimal polynomial of θ.
Then, the theory of (Z,+, 0, 1,R) is superstable of U-rank ω and
it is model-complete.



Expansions of the form (Z,+, 0, <,R)

(A.L. Semenov) A sequence R is sparse if the operators of the form
a0.S

0(y) + · · ·+ an.S
n(y) for y ∈ R, ai ∈ Z, are either = 0,

eventually strictly positive or strictly negative and if A >pp 0, then
there exists ∆ such that A(S∆y)− y > 0.

[A.L. Semenov, 1979] Let R be an increasing sequence of natural
numbers, which is sparse and periodic in each Z/nZ, then the
theory of (N,+,R) is model-complete i.e. any definable set is
existentially definable.

[P., 2000] Let R be an increasing sequence of natural numbers,
which is sparse and periodic in each Z/nZ. Then,
(Z,+, 0, 1, <, ./n, λR ,S , S−1) admits quantifier elimination and is
axiomatisable.



Sparse sequences

Examples of sparse sequences in N: let R := (rn)n≥0, with r0 = 1,
be a strictly increasing sequence such that limn→+∞

rn+1

rn
= θ > 1

exists.

1 limn→+∞
rn+1

rn
:= +∞,

2 θ is a transcendental number,

3 there exists θ such that limn→+∞
rn
θn exists and is nonzero,

and if in addition, in cases (1) and (2) the limit is effective and R
is periodic in each Z/nZ, then get decidability.
In case (3), one assumes in addition that R is given by a linear
recurrence whose characteristic polynomial is the minimal
polynomial of θ and one gives conditions under which limn→+∞

rn
θn

is effective.

An example of a non-sparse sequence is (rn := n + 2n) but
(N,+,R) is model-complete. It is bi-interpretable with
(N,+, n→ 2n).
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