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This talk deals with new logical systems
tuned to natural language

I The raison d’être of logic is the study of inference in language.

I However, modern logic was developed in connection with the
foundations of mathematics.

I So we have a mismatch, leading to

— neglect of language in the first place
— use of first-order logic and no other tools

I First-order logic is both too big and too small:

— cannot handle many interesting phenomena
— is undecidable



Natural logic: what it’s all about

Program

Show that significant parts of natural language inference can be
carried out in decidable logical systems.

Whenever possible, to obtain complete axiomatizations,
because the resulting logical systems are likely to be interesting.

To be completely mathematical and hence to work using all tools
and to make connections to fields like
complexity theory, (finite) model theory,
decidable fragments of first-order logic, and algebraic logic.



Natural Logic: parallel studies
I won’t have much to say on these, but you can ask me about them

I History of logic: reconstruction of original ideas

I Philosophy of language: proof-theoretic semantics

I Philosophy of logic: why variables?

I Cognitive science: models of human reasoning

I Linguistic semantics:
Are deep structures necessary, or can we just
use surface forms?
And is a complete logic a semantics?

I Computational linguistics/artificial intelligence:
many precursors



The Map

Arist
otle

Church-Turin
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Peano-Frege
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S≥ S≥ adds |p| ≥ |q|
R

R∗

R∗(tr)

R∗(tr , opp)
R†

R†∗

R†∗(tr)

R†∗(tr , opp)

FOL

FO2 + trans

FO2

first-order logic

FO2 + “R is trans”

2 variable FO logic

† adds full N-negation

R + relative clauses

R = relational syllogistic

R∗ + (transitive)

comparative adjs

R∗(tr) + opposites

S + full N-negation

S: all/some/no p are q

A: all p are q



The simplest fragment “of all”

Syntax: Start with a collection of nouns.
Then the sentences are the expressions

All p are q

Semantics: A model M is a set M,
together with an interpretation [[p]] ⊆ M for each noun p.

M |= All p are q iff [[p]] ⊆ [[q]]



The semantics is trivial, as it should be

Let M = {1, 2, 3, 4, 5, 6, 7, 8}.
Let [[a]] = {1, 2, 3, 4, 5, 6}.
Let [[x ]] = {1, 4}.
Let [[y ]] = {2, 4}.

M |= All x are a
M 6|= All a are x
M 6|= All y are x
M |= All y are a
M |= All a are a



Semantic and proof-theoretic notions

If Γ is a set of sentences, we write M |= Γ if for all ϕ ∈ Γ, M |= ϕ.

Γ |= ϕ means that every M |= Γ also has M |= ϕ.

All of this is semantic.



Proof system

The rules are

All p are p

All p are n All n are q

All p are q

A proof tree over Γ is a finite tree T
whose nodes are labeled with sentences,
and each node is either an element of Γ,
or comes from its parent(s) by an application of one of the rules.

Γ ` ϕ means that there is a proof tree T for over Γ
whose root is labeled ϕ.



Example

Let Γ be the set

{All a are b,All q are a,All b are d ,All c are d ,All a are q}

Let ϕ be All q are d .

Here is a proof tree showing that Γ ` ϕ:

All q are a
All a are b All b are d

All a are d
b

All q are d
b



The simplest completeness theorem in logic
If Γ |= All p are q, then Γ ` All p are q

Suppose that Γ |= All p are q.

Build a model M, taking M to be the set of variables.

Define u ≤ v to mean that Γ ` All u are v.
The semantics is [[u]] =↓u.
Then M |= Γ.
Hence for the p and q in our statement, [[p]] ⊆ [[q]].

But by reflexivity, p ∈ [[p]].
And so p ∈ [[q]]; this means that p ≤ q.

But this is exactly what we want:
Γ ` All p are q.



Syllogistic Logic of All and Some

Syntax: All p are q, Some p are q

Semantics: A model M is a set M,
and for each noun p we have an interpretation [[p]] ⊆ M.

M |= All p are q iff [[p]] ⊆ [[q]]
M |= Some p are q iff [[p]] ∩ [[q]] 6= ∅

Proof system:

All p are p

All p are n All n are q

All p are q

Some p are q

Some q are p

Some p are q

Some p are p

All q are n Some p are q

Some p are n



Example
If there is an n, and if all n are p and also q, then some p are q.

Some n are n, All n are p, All n are q ` Some p are q.

The proof tree is

All n are q

All n are p Some n are n

Some n are p

Some p are n

Some p are q



The languages S and S† add noun-level
negation

Let us add complemented atoms p on top of
the language of All and Some,
with interpretation via set complement: [[p]] = M \ [[p]].

So we have

S


All p are q
Some p are q
All p are q ≡ No p are q
Some p are q ≡ Some p aren’t q

Some non-p are non-q


S†



The logical system for S†

All p are p

Some p are q

Some p are p

Some p are q

Some q are p

All p are n All n are q

All p are q

All n are p Some n are q

Some p are q

All q are q

All q are p
Zero

All q are q

All p are q
One

All p are q

All q are p
Antitone Some p are p

ϕ Ex falso quodlibet



A fine point on the logic

The system uses

Some p are p
ϕ Ex falso quodlibet

and this is prima facie weaker than reductio ad absurdum.

One of the logical issues in this work is to determine exactly where
various principles are needed.



Completeness via representation of
orthoposets

Definition

An orthoposet is a tuple (P,≤, 0, ′) such that

poset ≤ is a reflexive, transitive, and antisymmetric
relation on the set P.

zero 0 ≤ p for all p ∈ P.

antitone If x ≤ y , then y ′ ≤ x ′.

involutive x ′′ = x .

inconsistency If x ≤ y and x ≤ y ′, then x = 0.



Completeness via representation of
orthoposets

Definition

An orthoposet is a tuple (P,≤, 0, ′) such that

poset ≤ is a reflexive, transitive, and antisymmetric
relation on the set P.

zero 0 ≤ p for all p ∈ P.

antitone If x ≤ y , then y ′ ≤ x ′.

involutive x ′′ = x .

inconsistency If x ≤ y and x ≤ y ′, then x = 0.

The idea

boolean algebra

propositional logic
=

orthoposet

logic of All, Some and ′

Completeness goes via representation.
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What are the simplest kinds of quantity
reasoning?

Our candidate would be combinations of

All x are y
Some x are y
No x are y

There are at least as many x as y
There are more x than y
There are at most as many x as y
There are fewer x than y
There are as many x as y
Most x are y



What are the simplest kinds of quantity
reasoning?

Our candidate would be combinations of

All x are y
Some x are y
No x are y

There are at least as many x as y
There are more x than y
There are at most as many x as y
There are fewer x than y
There are as many x as y
Most x are y

To add to the complexity, we could add the ability to use non-x
or even to take unions and intersections.



How can we do logic with these?

Semantics: A model M is a finite set M,
together with an interpretation [[p]] ⊆ M for each noun p.

M |= All p are q iff [[p]] ⊆ [[q]]
M |= Some p are q iff [[p]] ∩ [[q]] 6= ∅
M |= No p are q iff [[p]] ∩ [[q]] = ∅
M |= There are at least as many p as q iff |[[p]]| ≥ |[[q]]|
M |= There are more p than q iff |[[p]]| > |[[q]]|
M |= There are at most as many p as q iff |[[p]]| ≤ |[[q]]|
M |= There are fewer p than q iff |[[p]]| < |[[q]]|
M |= There are as many p as q iff |[[p]]| = |[[q]]|
M |= Most p are q iff |[[p]] ∩ [[q]]| > 1

2 |[[p]]|



All + Some + “there are at least as many” +
“there are more than”

There are at least as many x as y is written ∃≥(x , y)
There are more x than y is written ∃>(x , y)

∀(p, p)
(axiom)

∀(n, p) ∀(p, q)

∀(n, q)
(barbara)

∃(p, q)

∃(p, p)
(some)

∃(q, p)

∃(p, q)
(conversion)

∃(p, n) ∀(n, q)

∃(p, q)
(darii)

∀(p, q) ∃≥(p, q)

∀(q, p)
(card-mix)

∀(p, q)

∃≥(q, p)
(subset-size)

∃≥(n, p) ∃≥(p, q)

∃≥(n, q)
(card-trans)

∃(p, p) ∃≥(q, p)

∃(q, q)
(card-∃)

∃>(p, q)

∃≥(p, q)
(more-at least)

∃>(n, p) ∃≥(p, q)

∃>(n, q)
(more-left)

∃≥(n, p) ∃>(p, q)

∃>(n, q)
(more-right)

∃≥(p, q) ∃≥(q, p)
ϕ (X)



All + Some + “there are at least as many” +
“there are more than”

There are at least as many x as y is written ∃≥(x , y)
There are more x than y is written ∃>(x , y)

∀(p, p)
(axiom)

∀(n, p) ∀(p, q)

∀(n, q)
(barbara)

∃(p, q)

∃(p, p)
(some)

∃(q, p)

∃(p, q)
(conversion)

∃(p, n) ∀(n, q)

∃(p, q)
(darii)

∀(p, q) ∃≥(p, q)

∀(q, p)
(card-mix)

∀(p, q)

∃≥(q, p)
(subset-size)

∃≥(n, p) ∃≥(p, q)

∃≥(n, q)
(card-trans)

∃(p, p) ∃≥(q, p)

∃(q, q)
(card-∃)

∃>(p, q)

∃≥(p, q)
(more-at least)

∃>(n, p) ∃≥(p, q)

∃>(n, q)
(more-left)

∃≥(n, p) ∃>(p, q)

∃>(n, q)
(more-right)

∃≥(p, q) ∃≥(q, p)
ϕ (X)

Soundness/Completeness Theorem

Γ |= ϕ iff Γ ` ϕ.
Moreover, there’s an easy algorithm to tell whether or not Γ ` ϕ



Rules of inference using complemented
variables p

∀(p, p)

∀(p, q)
(zero)

∀(p, p)

∀(q, p)
(one)

∀(q, p) ∃(p, q)

∃>(p, q)
(more)

∃>(p, q)

∃(p, q)
(more-some)

∃>(q, p)

∃>(p, q)
(more-anti)

∀(p, q)

∀(q, p)
(anti)

∃≥(p, q)

∃≥(q, p)
(card-anti)

∃(p, p) ∃≥(q, q)

∃(q, q)
(int)

∃≥(p, p) ∃≥(q, q)

∃≥(p, q)
(half)

∃>(p, p) ∃≥(q, q)

∃>(p, q)
(strict half)

∃≥(p, p) ∃≥(q, q) ∃(p, q)

∃(p, q)
(maj) ∃(p, q) ∀(q, q)

ϕ (X)



Rules, rules, rules

∀(p, p)
(axiom)

∀(n, p) ∀(p, q)

∀(n, q)
(Barbara)

∃(p, q)

∃(p, p)
(some)

∃(q, p)

∃(p, q)
(conversion)

∀(p, q)

∀(q′, p′)
(anti)

∀(p, p′)

∀(p, q)
(zero)

∃(p, n) ∀(n, q)

∃(p, q)
(Darii)

∀(p′, p)

∀(q, p)
(one)

∀(p, q)

∃≥(q, p)
(subset-size)

∃≥(p, q)

∃≥(q′, p′)
(card-mon)

∃≥(p, q)

∃≥(q′, p′)
(card-anti)

∀(p, q) ∃≥(p, q)

∀(q, p)
(card-mix)

∃(p, p) ∃≥(p, q)

∃(q, q)
(card-∃)

∀(q, p) ∃(p, q′)

∃>(p, q)
(more)

∃>(p, q)

∃(p, q′)
(more-some)

∃>(p, q)

∃≥(p, q)
(more-at least)

∃>(n, p) ∃≥(p, q)

∃>(n, q)
(more-left)

∃>(q, p)

∃>(p′, q′)
(more-anti)

∃(p, p) ∃≥(q, q′)

∃(q, q)
(int)

∃≥(p, p′) ∃≥(q′, q)

∃≥(p, q)
(half)

∃>(p, p′) ∃≥(q′, q)

∃>(p, q)
(strict half)

∃≥(p, p′) ∃≥(q, q′) ∃(p′, q′)

∃(p, q)
(maj)

∃(p, q) ∀(p, q′)
ϕ (X)

∃>(p, q) ∃≥(q, p)
ϕ (X)



Implementation

The logic has been implemented in Sage, and the implementation
is currently available on https://cloud.sagemath.com.

(That is, I can share it.)

For example, one may enter

assumptions= [’All non-a are b’,

’There are more c than non-b’,

’There are more non-c than non-b’,

’There are at least as many non-d as d’,

’There are at least as many c as non-c’,

’There are at least as many non-d as non-a’]

conclusion = ’All a are non-c’

follows(assumptions,conclusion)

https://cloud.sagemath.com


Implementation

We get

The conclusion does not follow

Here is a counter-model.

We take the universe of the model to be

{0, 1, 2, 3, 4, 5}
noun semantics

a {2, 3}
b {0, 1, 4, 5}
c {0, 2, 3}
d {}

So it gives the semantics of a, b, c, and d as subsets of {0, . . . , 5}.
Notice that the assumptions are true in the model, but the
conclusion is false.



A proof

Here is an example of a derivation found by our implementation.
We ask whether the putative conclusion below really follows:

All non-x are x
Some non-y are z

There are more x than y

Here is a formal proof in our system:

1 All non-x are x Assumption

2 All y are x One 1

3 All non-x are x Assumption

4 All non-y are x One 3

5 Some non-y are z Assumption

6 Some non-y are non-y Some 5

7 Some non-y are x Darii 4 6

8 Some x are non-y Conversion 7

9 There are more x than y More 2 8



This talk: all, some, most

All X are X
All X are Y All Y are Z

All X are Z

Some X are Y
Some Y are X

Some X are Y
Some X are X

Some X are Y All Y are Z
Some X are Z

Can you think of any valid laws that add Most X are Y on top of
All X are Y and Some X are Y ?



This talk: all, some, most

All X are X
All X are Y All Y are Z

All X are Z

Some X are Y
Some Y are X

Some X are Y
Some X are X

Some X are Y All Y are Z
Some X are Z

Most X are Y
Some X are Y

m1
Some X are X
Most X are X

m2
Most X are Y All Y are Z

Most X are Z
m3

Most X are Z All X are Y All Y are X
Most Y are Z

m4

All Y are X All X are Z Most Z are Y
Most X are Y

m5

X1 .A,B Y1 Y1 .B,A X2 · · · Xn .A,B Yn Yn .B,A X1

Some A are B
.



The last infinite batch of rules

X1 .A,B Y1 Y1 .B,A X2 · · · Xn .A,B Yn Yn .B,A X1

Some A are B
.

Examples:
Most Z are X Most Z are Y

Some X are Y
.

You call this an inference rule?!

From

Most X are B ′,All A′ are A,Most Y are A′,All B ′ are B,All X are Y
Most Y are A′′,All A′′ are A,Most X are B ′′,All B ′′ are B,All A′′ are X

infer
Some A are B.



Results

Theorem (Jörg Endrullis & LM (WoLLIC 2015))

The logical system for this language is complete.

Theorem

Infinitely many axioms are needed in the system.

Theorem

The decision problem for the consequence relation

Γ ` ϕ

is in polynomial time.



Other work

With Tri Lai (then a grad student at IU in combinatorics)
we showed that

I Most X are Y

I boolean connectives, especially negation

has a very simple proof system and is also in PTIME.



Open question

I Get a such complete logic for

All X are Y Some X are Y Most X are Y
No X are Y ∃≥(X ,Y )

and sentential ∧, ∨, and ¬.

I Alternatively, prove that there is no such logic.

I Investigate the algorithmic properties of the logic.



Inference with relative clauses

What do you think about this one?

All skunks are mammals
All who fear all who respect all skunks fear all who respect all mammals



Inference with relative clauses

It follows, using an interesting antitonicity principle:

All skunks are mammals
All who respect all mammals respect all skunks



Inference with relative clauses

It follows, using an interesting antitonicity principle:

All skunks are mammals
All who respect all mammals respect all skunks

All who fear all who respect all skunks fear all who respect all mammals



All + Verbs + Relative Clauses

We start with two sets:

I a set of nouns.

I a set of verbs.

We make terms as follows:

I If x is a noun, then x is a term.

I If r is verb and x is a term, then r all x is a term.

We make sentences as follows:

I If x and y are terms, then

All x y

is a sentence.



Examples

Let’s say

I P = {dogs, cats, birds, ants, . . . }
I R = {see, like, hate, fear, respect, . . . }

Here are some terms of A(RC):

I dogs

I see all dogs

I respect all (see all dogs)

I love all (respect all (see all dogs))

Note that there are infinitely many terms, and terms may occur in
terms.



Examples

Let’s say

I P = {dogs, cats, birds, ants, . . . }
I R = {see, like, hate, fear, respect, . . . }

Here are some terms of A(RC):

I dogs

I see all dogs

I respect all (see all dogs)
read as respect all who see all dogs

I love all (respect all (see all dogs))
read as love all who respect all who see all dogs

Note that there are infinitely many terms, and terms may occur in
terms.
We read these in English using relative clauses.



Logic

We make proof trees using the following rules

All x x
Axiom

All x y All y z

All x z
Barbara

All y x

All (r all x) (r all y)
Anti

Note that we are using this with x , y , and z as terms, not only as
unary variables.



Example

All skunks mammals
All (love all mammals) (love all skunks)

anti

All (hate all (love all skunks)) (hate all (love all mammals))
anti
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Logic beyond the Aristotle boundary

R† and R†∗ lie beyond the Aristotle boundary,
due to full negation on nouns.

It is possible to formulate a logical system with
a restricted notion of variables,
prove completeness,
and yet stay inside the Turing boundary.

It’s a fairly involved definition, so I’ve hidden the details
to slides after the end of the talk.

Instead, I’ll show examples.



Example of a proof in the system
From all keys are old items,

infer everyone who owns a key owns an old item

[∃(key , own)(x)]2
[own(x , y)]1

[key(y)]1 ∀(key , old–item)

old–item(y)
∀E

∃(old–item, own)(x)
∃I

∃(old–item, own)(x)
∃E 1

∀(∃(key , own),∃(old–item, own))
∀I 2



Example of a proof in the system
From all keys are old items,

infer everyone who owns a key owns an old item

1 ∀(key , old–item) hyp

2 ∃(key , own)(x) hyp

3 key(y) ∃E , 2

4 own(x , y) ∃E , 2

5 old–item(y) ∀E , 1, 3

6 ∃(old–item, own)(x) ∃I , 4, 5

7 ∀(∃(key , own),∃(old–item, own)) ∀I , 1–6



Frederic Fitch, 1973
Natural deduction rules for English, Phil. Studies, 24:2, 89–104.

1 John is a man Hyp

2 Any woman is a mystery to any man Hyp

3 Jane Jane is a woman Hyp

4 Any woman is a mystery to any man R, 2

5 Jane is a mystery to any man Any Elim, 4

6 John is a man R, 1

7 Jane is a mystery to John Any Elim, 6

8 Any woman is a mystery to John Any intro, 3, 7



Review
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FO2 + “R is trans”

2 variable FO logic

† adds full N-negation

R + relative clauses

R = relational syllogistic

R∗ + (transitive)

comparative adjs

R∗(tr) + opposites

S + full N-negation

S: all/some/no p are q



Complexity
(mostly) best possible results on the validity problem

Arist
otle

Church-Turin
g

S

S†

BML(tr)
EXPTIME

Lutz & Sattler 2001

in co-NEXPTIME

R

R∗

R∗(tr)

R∗(tr , opp)
R†

R†∗

R†∗(tr)

R†∗(tr , opp)

FOL

FO2 + trans

FO2

undecidable

Church 1936
Grädel, Otto, Rosen 1999

Co-NEXPTIME
Grädel, Kolaitis, Vardi ’97

EXPTIME

Pratt-Hartmann 2004

Co-NP

McAllester & Givan 1992

lower bounds also open

NLOGSPACE



Complexity sketches
Again, joint with Ian Pratt-Hartmann

S NLOGSPACE lower bound via reachability problem
for directed graphs

S† NLOGSPACE upper bound via 2SAT
R NLOGSPACE upper bound takes special work

based on the proof system
R† EXPTIME lower bound via KU , Hemaspaandra 1996
R∗† EXPTIME upper bound by Pratt-Hartmann 2004
BML(tr) EXPTIME Boolean modal logic on transitive models

Lutz and Sattler 2001
R∗ Co-NPTIME essentially in McAllester and Givan 1992
FO2 NEXPTIME Grädel, Kolaitis, and Vardi 1997



The finite model property: Yes↓ and No↑

Arist
otle

Church-Turin
g

S

S†
R

R(tr , irr)

R∗(tr , irr)

R∗

R∗(tr)

R∗(tr , opp)
R†

R†∗

R†∗(tr)

R†∗(tr , opp)

FOL

FO2 + trans

FO2

filtration of a

Henkin model

Mortimer 1975

irr means that
comparative adjectives

must have irreflexive
interpretations.

∀(p,∃(p, r)) + ∃pS≥









Sylvester McMonkey McBean said, “you can’t teach a Sneetch”



The overall topic in this talk

How can a person or computer
answers questions involving a word which they don’t know?

A word like Sneetch.



The overall topic in this talk

How can a person or computer
answers questions involving a word which they don’t know?

A word like Sneetch.

What “follows from” means

One sentence follows from a second sentence
if every time we use the first sentence in a true way,
we could also have used the second.



The overall topic in this talk

How can a person or computer
answers questions involving a word which they don’t know?

A word like Sneetch.

What “follows from” means

One sentence follows from a second sentence
if every time we use the first sentence in a true way,
we could also have used the second.

If we say
every animal hops

then it follows that

every Sneetch moves



animal

Sneetch
Star-Belly Sneetch

move

dance

waltz



animal

Sneetch
Star-Belly Sneetch

move

dance

waltz

Let’s talk about a situation where

all Sneetches dance.

Which one would be true?

I all Star-Belly Sneetches dance
I all animals dance



animal

Sneetch
Star-Belly Sneetch

move

dance

waltz

I all Star-Belly Sneetches dance true
I all animals dance false

We write
all Sneetches↓ dance



animal

Sneetch
Star-Belly Sneetch

move

dance

waltz

all Sneetches↓ dance

What arrow goes on “dance”?

I all Sneetches waltz
I all Sneetches move



animal

Sneetch
Star-Belly Sneetch

move

dance

waltz

We write
all Sneetches↓ dance↑



animal

Sneetch
Star-Belly Sneetch

move

dance

waltz

Let’s put the arrows on the words Sneetches and dance.

1 No Sneetches dance.
2 If you play loud enough music, any Sneetch will dance.
3 Any Sneetch in Zargonia would prefer to live in Yabistan.
4 If any Sneetch dances, McBean will dance, too.
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Sneetch
Star-Belly Sneetch

move

dance
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Let’s put the arrows on the words Sneetches and dance.

1 No Sneetches↓ dance↓.
2 If you play loud enough music, any Sneetch will dance.
3 Any Sneetch in Zargonia would prefer to live in Yabistan.
4 If any Sneetch dances, McBean will dance, too.
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Sneetch
Star-Belly Sneetch

move

dance

waltz

Let’s put the arrows on the words Sneetches and dance.

1 No Sneetches↓ dance↓.
2 If you play loud enough music, any Sneetch↓ will dance↑.
3 Any Sneetch in Zargonia would prefer to live in Yabistan.
4 If any Sneetch dances, McBean will dance, too.
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Sneetch
Star-Belly Sneetch

move

dance

waltz

Let’s put the arrows on the words Sneetches and dance.

1 No Sneetches↓ dance↓.
2 If you play loud enough music, any Sneetch↓ will dance↑.
3 Any Sneetch↓ in Zargonia would prefer to live in Yabistan.
4 If any Sneetch dances, McBean will dance, too.



animal

Sneetch
Star-Belly Sneetch

move

dance

waltz

Let’s put the arrows on the words Sneetches and dance.

1 No Sneetches↓ dance↓.
2 If you play loud enough music, any Sneetch↓ will dance↑.
3 Any Sneetch↓ in Zargonia would prefer to live in Yabistan.
4 If any Sneetch↓ dances↓, McBean will dance↑, too.



What goes up? What goes down?

f (x , y) = y − x (1)

g(x , y) = x +
2

y
(2)

h(v ,w , x , y , z) =
x − y

2z−(v+w)
(3)



What goes up? What goes down?

f (x↓, y↑) = y − x (1)

g(x , y) = x +
2

y
(2)

h(v ,w , x , y , z) =
x − y

2z−(v+w)
(3)



What goes up? What goes down?

f (x↓, y↑) = y − x (1)

g(x↑, y↓) = x +
2

y
(2)

h(v ,w , x , y , z) =
x − y

2z−(v+w)
(3)



What goes up? What goes down?

f (x↓, y↑) = y − x (1)

g(x↑, y↓) = x +
2

y
(2)

h(v↑,w↑, x↑, y↓, z↓) =
x − y

2z−(v+w)
(3)



What goes up? What goes down?

f (x↓, y↑) = y − x (1)

g(x↑, y↓) = x +
2

y
(2)

h(v↑,w↑, x↑, y↓, z↓) =
x − y

2z−(v+w)
(3)

The ↑ and ↓ notations have the same meaning
in language as in math!

This is not an accident!



Fractions and cancelling

3× 2
3 = ?

7
4 × 4 = ?



Fractions and cancelling

�
�3× 2

��3
= 2

7
��4
× �

�4 = 7

You can cancel on the left.
You can cancel on the right.



Fractions and cancelling

7·��5·3
8·��5·2 = 21

40

��8·5·3
7·5·��8 = 15

40

You can cancel down the middle.
You can cancel end-to-end.



Fractions and cancelling

7·��5·3
8·��5·2 = 21

40

��8·5·3
7·5·��8 = 15

40

You can cancel down the middle.
You can cancel end-to-end.

7·��4·5
��4·��4·2 = 35

2

But if you cancel wrongly, . . .



Directional cancelling

\ means “look left”
/ means “look right”

X × (Y \X ) = Y

(X/Y )× Y = X



Categorial grammar

McBean: NP

teased: (S\NP)/NP

a : NP/N Sneetch : N

a Sneetch: NP

teased a Sneetch: S\NP
McBean teased a Sneetch: S

Seuss: NP

criticized: (S\NP)/NP McBean: NP

criticized McBean: S\NP gently: (S\NP)\(S\NP)

criticized McBean gently: S\NP
Seuss criticized McBean gently: S



Traditional English syntax
and directional fractions

syntactic category name in traditional grammar

S sentence

N noun

NP noun phrase

N/N adjective

S\NP verb phrase

S\NP intransitive verb

(S\NP)\(S\NP) adverb

(S\NP)/NP transitive verb

NP/N determiner

(N\N)/(S\NP) relative pronoun



Proposal:
marry grammar and inference



Proposal:
marry grammar and inference



Sneetch ≤ animal

every animal↓ ≤ every Sneetch↓
every ≤ most

every Sneetch↓ ≤ most Sneetches↓

every animal↓ ≤ most Sneetches↓

every animal↓ hops↑ ≤ most Sneetches↓ move↑

This is how a computer could do the reasoning:

if every animal hops
then most Sneetches move



Disciplines involved

I linguistics

I logic

I artificial intelligence/cognitive science

I mathematics

I philosophy



Disciplines involved

I linguistics

I logic

I artificial intelligence/cognitive science

I mathematics

I philosophy

Natural Sciences Humanities



What about Watson?



Natural logic: what I hope to have gotten
across

Program

Show that significant parts of natural language inference can be
carried out in decidable logical systems.

Whenever possible, to obtain complete axiomatizations,
because the resulting logical systems are likely to be interesting.

To be completely mathematical and hence to work using all tools
and to make connections to fields like
complexity theory, (finite) model theory,
decidable fragments of first-order logic, and algebraic logic.



Last words for logicians

I We must ask whether a complete proof system is a semantics.

I We should not be afraid of doing logic beyond logic.

I Joining the perspectives of semantics, complexity theory,
proof theory, cognitive science, and computational linguistics
should allow us to ask interesting questions and answer them.



Influences

I Aristotle

I Boole, de Morgan

I (1960’s and ’70’s) Montague, Fitch, Lakoff

I McAllester and Givan, Nishihara, Morita, Iwata, etc.

I Sommers, Corcoran, Martin

I van Benthem

I Ian Pratt-Hartmann and Thomas Icard

I maybe you, why not?



Living in two worlds


