
Convexly valued o-minimal fields

Jana Maříková

Western Illinois University

April 21, 2017
Logic Colloquium, UC Berkeley



O-minimality

The notion of o-minimality was identified by van den Dries in the
early eighties of the previous century [3], and its model theoretic
development started with work of Knight, Pillay and Steinhorn [11],
[8].

(M, <, . . . ) is o-minimal if the only definable subsets of M are
finite unions of points and intervals.

This condition on one-variable definable sets has strong
consequences for definable sets in higher dimensions. Perhaps most
prominently, one has a cell decomposition theorem. A consequence
of cell decomposition is that o-minimality is really strong
o-minimality.
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Valuations

We let R be an o-minimal field (i.e. an o-minimal expansion of a
real closed field) and V a convex subring (for example, the convex
hull of Q in R). Then V is in particular a valuation ring, i.e. it has
a unique maximal ideal m.

V has a corresponding residue map

res : V → V /m, where k := V /m is the residue field,

and a corresponding valuation

v : R× → R×/V×, where Γ := R×/V× is the value group.
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Valuations

Why valuations?

I Ax-Kochen-Ersöv principle: Under certain conditions (for
example henselianity or residue characteristic zero) on the
valued field one has that two valued fields are elementarily
equivalent iff their residue fields and value groups are
elementarily equivalent.

I Limit sets: One can use valuations to show that in o-minimal
expansions of R, Hausdorff limits of definable families form
definable families (see for example [4]).

I Preparation theorems: Prepared functions of several variables
depend in a piecewise simple way on any chosen variable. The
existence of prepared versions of definable functions in certain
o-minimal structures can be viewed as a geometric translation
of valuation theoretic facts (see for example [6]).
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Structures (R ,V )

We shall consider structures (R,V ), where R is an o-minimal field
and V is a convex subring.

If R is a pure real closed field, then (R,V ) eliminates quantifiers in
a suitable language (Cherlin, Dickmann [2]).

For o-minimal fields, a good analogue of convex subrings of real
closed fields are T -convex subrings (van den Dries, Lewenberg [5]).
The T -convex subrings of R are precisely the convex hulls of the
elementary substructures of R .

Among the nice properties of T -convex structures are quantifier
elimination and o-minimality of the residue field (with induced
structure) – in fact one has Th(k) = Th(R).
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o-minimal residue fields

T -convexity does not capture all cases of interest. For example, if
V is the convex hull of Q in R , then V is not necessarily T -convex
(the language of R might contain a constant symbol for an element
in R>V , or Th(R) might not be pseudo-real).

On the other hand, if V is the convex hull of Q in R , then k = R,
hence k with induced structure is o-minimal.

We shall consider (R,V ) such that k with induced structure is
o-minimal. This does not only include all cases where V is the
convex hull of Q in R , but also all instances in which V is
T -convex.
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Some results on (R ,V ) with o-minimal residue field

This class has a first order axiomatization ([9], [10]):

Theorem (M.)
k is o-minimal iff for each definable f : R → R there is ε0 ∈ m>0 so
that res f (ε0) = res f (ε) for all ε ∈ m>ε0 .

The above condition is equivalent to:

Whenever Y ⊆ kn is closed and definable in k with its induced
structure, then there is X ⊆ Rn definable in R such that resX = Y .
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QE for (R ,V )

We now assume that L, the language of R , is such that R
eliminates quantifiers and is universally axiomatizable in L (this can
always be achieved by extending by definitions).

Theorem
Suppose (R0,V0) � (R,V ). Then (R,V ) considered as an
LR0 ∪ {V }-structure eliminates quantifiers.

The theorem follows by a short, elementary proof from a
model-completeness result in [7].
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Model completeness

Theorem (Ealy, M.)
Suppose (R0,V0) � (R,V ). Then (R,V ) considered as an
LR0 ∪ {V }-structure is model complete.

Recall that a structure is said to be model complete if every
first-order formula is equivalent to a universal formula. Equivalently,
every embedding of models is an elementary embedding.

The proof of model completeness uses (somewhat surprisingly)
abstractly model-theoretic notions such as Morley sequences and
dividing. An essential ingredient is the notion of separation as
introduced by Baisalov and Poizat.
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Model completeness

One shows that dividing in a Morley sequence in an invariant
one-type in an o-minimal theory is symmetric to obtain a criterion
for elementary extensions:

Theorem (Ealy, M)
Let R � R, let a ∈ R, and let W ⊆ R〈a〉 be such that
(R,V ) ⊆ (R〈a〉,W ). Then (R,V ) � (R〈a〉,W ) iff there there are
no R-definable functions f , g such that f (a) ∈W, g(a) >W and
V < f (a), g(a) < R>V .
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Model completeness

Next, one proves that the residue field is stably embedded; this can
in turn be used to show that the above criterion for elementary
extensions is satisfied whenever (R,V ) ⊆ (R ′,V ′) and
(R,V ) ≡ (R ′,V ′).

Adding constants for elements of R0 (where (R0,V0) � (R,V )) to
the language is necessary to have

If Y ⊆ kn is ∅-definable in the residue field, then there is X ⊆ Rn,
∅-definable in R , such that res(X ) = Y .



Model completeness

Next, one proves that the residue field is stably embedded; this can
in turn be used to show that the above criterion for elementary
extensions is satisfied whenever (R,V ) ⊆ (R ′,V ′) and
(R,V ) ≡ (R ′,V ′).

Adding constants for elements of R0 (where (R0,V0) � (R,V )) to
the language is necessary to have

If Y ⊆ kn is ∅-definable in the residue field, then there is X ⊆ Rn,
∅-definable in R , such that res(X ) = Y .



Model completeness

Next, one proves that the residue field is stably embedded; this can
in turn be used to show that the above criterion for elementary
extensions is satisfied whenever (R,V ) ⊆ (R ′,V ′) and
(R,V ) ≡ (R ′,V ′).

Adding constants for elements of R0 (where (R0,V0) � (R,V )) to
the language is necessary to have

If Y ⊆ kn is ∅-definable in the residue field, then there is X ⊆ Rn,
∅-definable in R , such that res(X ) = Y .



Substructures are elementary

Quantifier elimination then follows by establishing that
substructures are elementary.
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Quantifier elimination

Recall that for a model complete theory T , quantifier elimination is
equivalent to T ∀ having the amalgamation property.

Corollary
Th(R,V ) admits elimination of quantifiers.

Corollary
Th(R,V ) has definable Skolem functions.
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I Do we have model completeness/quantifier elimination in a
language without constants for elements of R0?
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