Constraint Satisfaction vs. Dependence Logic

Phokion G. Kolaitis

UC Santa Cruz and IBM Research - Almaden
Joint work with
Lauri Hella

University of Tampere

UNIVERSITY OF CALIFORNIA

HNTH GRIL

B
o

Constraint Satisfaction and Dependence Logic

» Constraint Satisfaction is a ubiquitous problem in computer
science.

It was introduced by Ugo Montanari more than 40 years ago.

» Dependence Logic is a logical formalism for expressing and
analyzing notions of dependence.

It was developed by Jouko Vaananen about 10 years ago.

Question: What do constraint satisfaction and dependence logic
have in common?

N)

35

Constraint Satisfaction Problems

Input: (V,D, C)
> A finite set V of variables
» A finite domain D of values for the variables

» A set C of constraints (t, R) restricting the values that tuples
of variables can take.

» t: atuple t = (xi,...,xn) of variables
» R: arelation on D of arity |t| =m

Question: Does (V, D, C) have a solution?
Solution:

» An assignment of values to the variables such that all
constraints are satisfied.

» Formally, a function h: V — D such that for every constraint
(t,R) € C, we have h(t) = (h(x1),...,h(xm)) € R.

35

Constraint Satisfaction

Fact: Numerous problems in computer science are constraint
satisfaction problems.

» Boolean Satisfiability, Graph Colorability, ...

v

Database Query Processing

v

Planning and Scheduling

Belief Maintenance

v

Machine Vision

v

R. Dechter: "Constraint satisfaction has a unitary theoretical
model with myriad practical applications.”

35

Example: Boolean Satisfiability

3-SAT: Given a 3CNF-formula ¢ with variables x, ..., x, and
clauses ci, ..., Cm, is @ satisfiable?

3-SAT as a constraint satisfaction problem:

» Variables x4, ..., x,

» Domain D = {0, 1}

» Constraints ((x,y,z),R;), i=0,1,2,3
Clause ‘ Relation
(X\/y\/Z) RO:{071}3_{(070 0)}
(_'X \ y N Z) Rl = {Oa 1}3 - {(17 Oa 0)}
(xVoyvz) | Re=1{0,1P —{(1,1.0)}
("X\/ﬁyvﬁz) R; = {071}3_{(17131)}

Example: Graph Colorability

3-COLORABILITY: Given a graph G = (V/, E), is it 3-colorable?
3-COLORABILITY as a constraint satisfaction problem:

> The variables are the nodes in V

» The domain is the set D = {R, G, B} of three colors.

» For each edge (u, v) € E, there is one constraint ((u, v), R),
where R is the the # relation on {R, G, B}, i.e.,

R ={(R,G),(G,R),(R,B),(B,R),(B, G),(G, B)}.

6

35

Algebraic Formulation of Constraint Satisfaction

Feder and Vardi - 1993:
Constraint Satisfaction = Homomorphism Problem.

» A homomorphism between two relational structures A and B
is a function h: A — B such that for every relation symbol R
in the vocabulary and every (a1,...,a,) € A",

(a1,...,an) € RA* = (h(a1),...,h(a,)) € RE.

» Every finite relational structure B, gives rise to a constraint
satisfaction problem CSP(B): Given a finite relational
structure A, is there a homomorphism h: A — B?

» Conversely, every constraint satisfaction problem can be
identified with a CSP(B), for some suitable B.

Constraint Satisfaction and the Homomorphism Problem

» 3-COLORABILITY = CSP(K3), there K3 is the clique with 3
elements.

» k-COLORABILITY = CSP(Ky), there K is the clique with k
elements, k > 2.

/35

Constraint Satisfaction and the Homomorphism Problem

» 3-COLORABILITY = CSP(K3), there K3 is the clique with 3
elements.

» k-COLORABILITY = CSP(Ky), there K is the clique with k
elements, k > 2.

» PosSITIVE NAE 3-SAT: Given a 3-CNF formula with only
positive literals, is there a satisfying truth assignment such
that in each clause not every variable is assigned value 17
PosiTive NAE 3-Sat = CSP(B), where
- B = ({0,1}, R®) with RB = {0,1}3\ {(0,0,0),(1,1,1)};

— each 3-CNF formula ¢ with only positive literals is encoded
as A(y), where RA®) = {(x,y,z) : xVyVzis a clause in ©}.

35

Computational Complexity of Constraint Satisfaction

Fact:
» CSP(B) is in NP, for every B.
» CSP(K3) (i.e., 2-COLORABILITY) is in PTIME.
(

)
» CSP(Kk) (i.e., k-COLORABILITY) is NP-complete, for every
k > 3.

35

Computational Complexity of Constraint Satisfaction

Fact:
» CSP(B) is in NP, for every B.
» CSP(K3) (i.e., 2-COLORABILITY) is in PTIME.
» CSP(Kk) (i.e., k-COLORABILITY) is NP-complete, for every
k > 3.

Feder-Vardi Dichotomy Conjecture - 1993
For every B, one of the following two holds:

» CSP(B) is in PTIME.
» CSP(B) is NP-complete.

35

The Fine Structure of NP

Theorem (Ladner - 1975)
If PTIME # NP, then there is a decision problem Q such that

» @ isin NP, but not in PTIME.
> @ is not NP-complete.

NP-complete
not NP-complete, not in PTIME
PTIME

10/35

The Fine Structure of NP

Theorem (Ladner - 1975)

If PTIME # NP, then there is a decision problem Q such that

» @ is in NP, but not in PTIME.
> @ is not NP-complete.

NP-complete

not NP-complete, not in PTIME

PTIME

Feder-Vardi Dichotomy Conjecture

/!
N

CSP(B)

NP-complete

not NP-complete, not in PTIME

PTIME

10/35

Feder-Vardi Dichotomy Conjecture

Fact: Several special cases of this conjecture have been confirmed.

» B is an undirected graph (Hell-Nesetfil - 1990).
» B is a Boolean structure, i.e., |B| = 2 (Schaefer - 1978).

» B is a three-element structure, i.e., |B| = 3 (Bulatov - 2006).

Fact: The study of constraint satisfaction has been a meeting
point of computational complexity, logic, and universal algebra.

11/35

Constraint Satisfaction and Logic

Fact:
» Each CSP(B) is expressible in X1 (Existential SO Logic).

» Feder and Vardi identified a natural fragment of monadic ¥}
that, in a precise sense “captures” constraint satisfaction.

12/35

Constraint Satisfaction and Logic

Fact:
» Each CSP(B) is expressible in X1 (Existential SO Logic).
» Feder and Vardi identified a natural fragment of monadic ¥}
that, in a precise sense “captures” constraint satisfaction.
Motivating Example:
> Recall that PosiTivE NAE 3-Sat = CSP(B), where
B = ({0,1}, R®) with RB = {0,1}3\ {(0,0,0),(1,1,1)};

» PosSITIVE NAE 3-SAT is definable by the ¥}-sentence:

IS Vx,y, z(R(x,y,z) = (S(x) V S(y) vV 5(2)) A (=S(x) V =S5(y) V =5(2))).

12/35

Constraint Satisfaction and Logic

Fact:
» Each CSP(B) is expressible in X1 (Existential SO Logic).
» Feder and Vardi identified a natural fragment of monadic ¥}
that, in a precise sense “captures” constraint satisfaction.
Motivating Example:
> Recall that PosiTivE NAE 3-Sat = CSP(B), where
B = ({0,1}, R®) with RB = {0,1}3\ {(0,0,0),(1,1,1)};

» PosSITIVE NAE 3-SAT is definable by the ¥}-sentence:

IS Vx,y, z(R(x,y,z) = (S(x) V S(y) vV 5(2)) A (=S(x) V =S5(y) V =5(2))).

Definition: MMSNP is the fragment of monadic ¥} such that
» all first-order quantifiers are universal;
> no inequalities # occur;

> relation symbols from the vocabulary occur only negatively.

12/35

MMSNP vs. Constraint Satisfaction

Definition: Let 1) be an MMSNP-sentence. The model checking
problem MC(v)) of ¢ asks: Given a structure A, does A |= 97

Theorem (Feder-Vardi 1993, Kun-Nesetfil 2008)
> For every B, there is an MMSNP-sentence 1 such that
CSP(B) = MC(v)).
» For every MMSNP-sentence v, there is a structure B such
that MC(¢) is PTIME-equivalent to CSP(B).

Corollary: There is a dichotomy in the complexity of constraint
satisfaction if and only if there is a dichotomy in the complexity of
the model checking problem for MMSNP.

13 /35

Dependence logic

Fact: Various notions of dependence and independence are
encountered in computer science and mathematics:

» Functional dependencies in relational databases;
> Independence in linear algebra;

» Independence in probability theory.

Fact: Dependence logic is a formalism for expressing and analyzing
notions of dependence and independence.

» It was introduced by Jouko Vaananen in 2007.

» The origins of dependence logic can be traced to partially
ordered quantifiers (Henkin - 1961) and independence-friendly
logic (Hintikka-Sandu - 1989).

14 /35

Relational Databases and Database Dependencies

In 1970, E.F. Codd introduced the relational database model.

» A relational database is a finite collection Ry, ..., Ry of finite
relations.

» Every relation R; can be thought of as a table; the columns of
each table have names, called attributes.

TEACHES(instructor, course, term)

> In general, data are not arbitrary; instead, data obey certain
semantic restrictions that are called database dependencies.

» Functional Dependencies (FDs) are the most widely used and
extensively studied database dependencies.

15 /35

Functional Dependencies

Definition: R a relation, X and Y lists of attributes of R.
» R satisfies the functional dependency X — Y if for all tuples
s and s’ in R such that s[X] = s'[X], we have s[Y] = §'[Y].

» Informally, the values of the attributes in Y are a function of
the values of the attributes in X.

Examples: TEACHES(instructor, course, term)
» instructor, term — course holds if no instructor teaches more
than one courses each term.

» course, term — instructor holds if no course in a given term is
taught by more than one instructors.

16

35

The Implication Problem for Functional Dependencies

Definition: ¥ a set of FDs, X — Y a FD.
Y | X — Y if for every relation R that satisfies every FD in X, we
have that R satisfies X — Y.
Examples: Armstrong's Axioms - 1974
> Reflexivity: If Y C X, then = X — Y.
» Augmentation: X — Y | XZ — YZ, for every Z.
» Transitivity: {X =Y, Y—>Z}EX— Z.

Theorem (Beeri-Bernstein - 1979)
The implication problem for functional dependencies is solvable in
linear time.

17 /35

Functional Dependencies and Dependence Logic

Characteristics of Dependence Logic:

» Functional dependencies form the basic building blocks of
Dependence Logic: they are atoms with the attributes as their
free variables.

» Dependence Logic augments functional dependencies with the
standard constructs of first-order logic, i.e., with Boolean
connectives and first-order quantifiers.

Differences between Dependence Logic and First-Order Logic
» Team semantics, instead of Tarskian semantics

» Second-order interpretation of disjunction.

18/35

The Main Ingredients of Dependence Logic

Team Semantics

» Tarskian semantics: structure A, formula ¢, assignment s of
values from B to the free variables of .

» Single asssigments cannot give meaning to an FD X — Y.
A set of assignments, i.e., a relation R is needed to give
meaning to X — Y. Sets of assignments are called teams.

19/35

The Main Ingredients of Dependence Logic

Team Semantics
» Tarskian semantics: structure A, formula ¢, assignment s of
values from B to the free variables of .

» Single asssigments cannot give meaning to an FD X — Y.
A set of assignments, i.e., a relation R is needed to give
meaning to X — Y. Sets of assignments are called teams.

Semantics of Disjunction: What does it mean to say that
R = (instructor, term — course) V (course, term — instructor)?

19/35

The Main Ingredients of Dependence Logic

Team Semantics

» Tarskian semantics: structure A, formula ¢, assignment s of
values from B to the free variables of .

» Single asssigments cannot give meaning to an FD X — Y.
A set of assignments, i.e., a relation R is needed to give
meaning to X — Y. Sets of assignments are called teams.

Semantics of Disjunction: What does it mean to say that
R = (instructor, term — course) V (course, term — instructor)?

> Pedantic Answer:
R = instructor, term — course or
R |= course, term — instructor.

> Imaginative Answer: There are R;, Ry s.t. R= R UR,

R:1 = instructor, term — course and
Ry = course, term — instructor.

19/35

Dependence logic D: Syntax

Definition: Let 7 be a relational vocabulary.
D(7)-formulas are defined by the following grammar:

o = xi=x | (x1=x)| R(x1,...,%n) | "R(x1,- -, %n) |
dep(x1,- -, Xn; ¥) | (p1 Aw2) | (91 V 2) | Vx| Ixep,
where R € 7.

Note:

» D(7)-formulas are assumed to be in negation normal form:
negations may occur only in front of equality atoms or
relational atoms.

» Dependence atoms dep(xi, ..., Xp; y) occur only positively.

20 /35

Dependence logic D: Team Semantics

Definition: A team on A is a set T of assignments s: V — A, for
some fixed set V = dom(T) of variables.

Team Semantics: A, T = ¢

» Atomic or negated atomic formula 6
A TEOIfA sE=0, foreveryse T.

» Dependence atom dep(x; y)
A, T |=dep(xi,...,xn y) if thereis f : A" — A such that for
all s € T, we have that s(y) = f(s(x1),-..,s(xn)).

» Conjunction
ATEpANYIfA TEp and A, T 1.

» Disjunction
A TE@Viifthere are T', T C T such that
TUT' =T, AT Ee, AT 4.

21/35

Dependence logic D: Team Semantics (continued)

Team Semantics: A, T = ¢

» Universal quantifier
AT EVYxyif A, T[A/x] E 1,
where
T[A/x] = {s[a/x]:s€ T,ac A}.

» Existential quantifier
A, T = dxy if thereis F: T — A such that A, T[F/x] E v,
where
T[F/x] = {s[F(s)/x]:s € T}.

» If 4/ is a D-sentence, then A |= 1 if A, {0} = 4.

22 /35

Dependence logic: Expressive Power

Theorem (Vaananen - 2007)
For sentences, D = ¥} (Existential Second-Order Logic)

23/35

Dependence logic: Expressive Power
Theorem (Vaananen - 2007)
For sentences, D = ¥} (Existential Second-Order Logic)

Fagin's Theorem - 1974
On the class of all finite structures, ¥1 = NP.

Corollary:
On the class of all finite structures, D = NP. Hence,
every constraint satisfaction problem CSP(B) is D-definable.

23 /35

Dependence logic: Expressive Power

Theorem (Vaananen - 2007)
For sentences, D = ¥} (Existential Second-Order Logic)

Fagin's Theorem - 1974
On the class of all finite structures, ¥1 = NP.

Corollary:
On the class of all finite structures, D = NP. Hence,
every constraint satisfaction problem CSP(B) is D-definable.

Theorem (Jarmo Kontinen - 2013)
3-SAT is polynomial-time reducible to the model-checking problem
of the quantifier-free D-formula

dep(x;y) V dep(u; v) V dep(u; v).

23 /35

Constraint Satisfaction vs. Dependence Logic

Question:
What is the exact connection between dependence logic and
constraint satisfaction?

24 /35

Constraint Satisfaction vs. Dependence Logic

Question:
What is the exact connection between dependence logic and
constraint satisfaction?

Main Result:
There is natural fragment of dependence logic that, in a precise

sense, captures exactly the class of all constraint satifaction
problems CSP(B).

24 /35

Uniform Dependence Atoms

Uniform dependence atom: udep(xi,...,Xn Y1s---,Yn)

Semantics: A, T |=udep(x1,...,Xn ¥1,...,Yyn) if there is a unary
function g : A — A such that for every s € T, we have that

s(y1) = g(s(x1)), - - -, s(yn) = g(s(xn))-

25 /35

Uniform Dependence Atoms

Uniform dependence atom: udep(xi,...,Xn Y1s---,Yn)

Semantics: A, T |=udep(x1,...,Xn ¥1,...,Yyn) if there is a unary

function g : A — A such that for every s € T, we have that
s(y1) = g(s(x1)); - - -, s(yn) = g(s(xn))-

Uniform k-valued dependence atom:
udeplk](x1, ..., Xn; @1,...,Qp), where a1,...,«, are k-valued
variables ranging over the set [k] = {1,..., k}.

Semantics: A, T |= udep[k](xi,...,Xn; a1,...,ap) if there is a
unary function h: A — [k] such that for every s € T, we have that
s(a1) = h(s(3)). .. . s(crn) = h(s(xa).

25/35

Universal Monotone Uniform Dependence Logic

» QF-MUDI[k]: Quantifier-free monotone dependence logic with
uniform k-valued dependence atoms

¢ u= a=i|-R(x)[udep[k](x;a) | (g1 A @2) [(p1V ¢2),
where i € [k].
> QF-MUD = U=, QF-MUD[A].

» V-MUDIk]: Universal monotone dependence logic with
uniform k-valued dependence atoms

p = P |Vxp | Vayp,
where ¢ € QF-MUDIk].

26 /35

Universal Monotone Uniform Dependence Logic

¢ = a=i|-R(x)|udep[k](x;a)| (p1Ap2)]|(p1V¢2)
Vxo | Yop.

Remarks:

» Analogously to MMSNP, the logics QF-MUD and V-MUD
allow no inequalities and only negative occurrences of R € 7.

» udep[k](xi,...,Xn; Q1,...,ap) is expressed by the D-formula

Vy3B(dep(y; B) A Niepa(y = xi = B =).
This formula violates the syntactic restrictions of V-MUD[k]:
— It contains existential quantification;
— It contains inequalities between first-order variables.

27 /35

Constraint Satisfaction vs. Dependence Logic

Theorem: Constraint Satisfaction is PTIME-equivalent to the
Model Checking Problem for V-MUD.

> For every structure B, there is a V-MUD-sentence ¢g such
that CSP(B) is PTIME-equivalent to MC(yg).

» For every V-MUD-sentence ¢, there is a structure B, such
that MC(yp) is PTIME-equivalent to CSP(B,,).

Corollary: The Feder-Vardi Dichotomy Conjecture for CSP(B)
holds if and only if a dichotomy in the complexity of the Model
Checking Problem for ¥-MUD holds.

28 /35

From Constraint Satisfaction to Dependence Logic

Theorem A: (V-MUD captures CSP)
Assume that 7 = {R}. For every 7-structure C with |C| = k, there
is a V-MUD[k]-sentence ¢ such that for every 7-structure A,

A € CSP(C) if and only if A = ¢c.

29 /35

From Constraint Satisfaction to Dependence Logic

Theorem A: (V-MUD captures CSP)
Assume that 7 = {R}. For every 7-structure C with |C| = k, there
is a V-MUD[k]-sentence ¢ such that for every 7-structure A,

A € CSP(C) if and only if A = ¢c.

Theorem: (Feder-Vardi - 1993)

For every structure B, there is a structure C over a vocabulary
with a single binary relation symbol such that CSP(B) is
PTIME-equivalent to CSP(C).

Corollary: For every structure B, there is a V-MUD-sentence ¢g
such that CSP(B) is PTIME-equivalent to MC(pg).

29 /35

From Constraint Satisfaction to Dependence Logic

» To prove Theorem A, it suffices to find a QF-MUD[k]-formula
fc such that A € CSP(C) if and only if A, F |= fc, where
F is the full team consisting of all assignments
si{X1,. s Xn, 01, ..., nt — AU[K].
This is so because A, F |= Oc if and only if A |= ¢c, where ¢c
is the sentence VxVa fc.

» Observe next that if A, T |= udep[k](x,a), then there is a
homomorphism h: (A, RT x) — ([k], RT.a). Where
Rt x is the relation {s(x) : s € T}, and similarly for Rt 4.

Thus, if RA C Rrx and R4 C RS, then A € CSP(C).

» The idea of the proof is to build f¢ using disjunctions in such
a way that if A, F |= 0c, then there is a subteam T of F
satisfying the conditions above.

30/35

From Constraint Satisfaction to Dependence Logic

Example: POSITIVE 1-IN-3 3-SAT = CSP(B), where
B = ({0,1}, RB) with R® = {(1,0,0),(0,1,0),(0,0,1)}.

Here, we have that

o 1= Vx1VxVx3Vai Voo Vas ((ne A ve) V —R(x1, x2,x3) V 1B),
where

> 7 := udep[2](x3; a3) V (a3 = 0 A udep[2](x2; az2))

Vudep[2](x1, X2, x3; 01, 2, v3)

31/35

From Dependence Logic to Constraint Satisfaction

Theorem B: (MMSNP is at least as expressive as V-MUD)
For every V-MUD-sentence ¢ be a sentence, there is a
MMSNP-sentence ¢* such that for every structure A

A | ¢ if and only if A = p*.

Recall the following result:

Theorem (Feder-Vardi - 1993)
For every MMSNP-sentence 1, there is a structure B such that
MC(v)) is equivalent to CSP(B) via PTIME-reductions.

Corollary: For every V-MUD-sentence ¢, there is a structure B,
such that MC(yp) is PTIME-equivalent to CSP(B,,).

32/35

From Dependence Logic to MMSNP

>

To prove Theorem B, translate inductively QF-MUD[k] to the
extension of MMSNP with k-valued variables.

The translation of each QF-MUD-formula ¢ is of the form
IPYxVyVa(R(xa) —),
where 1T is quantifier free. Here, R is an extra relation

symbol interpreted by the team on which 1) is evaluated.

One can prove that
AT EY iff (A RTxe) |E IPVXVyVa(R(xa) — ¢T).
This extends easily to V-MUD[k]-sentences

A EVxVay iff A E IPVYxVyVay™.

Theorem B follows from this, as the k-valued variables can be
easily eliminated from sentences of MMSNP.

33/35

Concluding Remarks

> We identified a fragment of dependence logic that captures
constraint satisfaction, up to polynomial-time equivalence.

» This result implies that a complexity classification of the
model checking problem for universal dependence logic is at
least as hard as settling the Feder-Vardi dichotomy conjecture
for constraint satisfaction.

» What is the exact expressive power of Y-MUD?

» |s CSP(B) definable in V-MUD for every B?
» Is V-MUD a proper fragment of MMSNP?

34 /35

