
Constraint Satisfaction vs. Dependence Logic

Phokion G. Kolaitis

UC Santa Cruz and IBM Research - Almaden

Joint work with

Lauri Hella
University of Tampere

Constraint Satisfaction and Dependence Logic

I Constraint Satisfaction is a ubiquitous problem in computer
science.

It was introduced by Ugo Montanari more than 40 years ago.

I Dependence Logic is a logical formalism for expressing and
analyzing notions of dependence.

It was developed by Jouko Väänänen about 10 years ago.

Question: What do constraint satisfaction and dependence logic
have in common?

2 / 35

Constraint Satisfaction Problems

Input: (V ,D,C)
I A finite set V of variables
I A finite domain D of values for the variables
I A set C of constraints (t,R) restricting the values that tuples

of variables can take.
I t: a tuple t = (x1, . . . , xm) of variables
I R: a relation on D of arity |t| = m

Question: Does (V ,D,C) have a solution?
Solution:

I An assignment of values to the variables such that all
constraints are satisfied.

I Formally, a function h : V → D such that for every constraint
(t,R) ∈ C , we have h(t) = (h(x1), . . . , h(xm)) ∈ R.

3 / 35

Constraint Satisfaction

Fact: Numerous problems in computer science are constraint
satisfaction problems.

I Boolean Satisfiability, Graph Colorability, ...
I Database Query Processing
I Planning and Scheduling
I Belief Maintenance
I Machine Vision

...

R. Dechter: “Constraint satisfaction has a unitary theoretical
model with myriad practical applications.”

4 / 35

Example: Boolean Satisfiability

3-Sat: Given a 3CNF-formula ϕ with variables x1, . . . , xn and
clauses c1, . . . , cm, is ϕ satisfiable?

3-Sat as a constraint satisfaction problem:

I Variables x1, . . . , xn

I Domain D = {0, 1}
I Constraints ((x , y , z),Ri), i = 0, 1, 2, 3

Clause Relation
(x ∨ y ∨ z) R0 = {0, 1}3 − {(0, 0, 0)}
(¬x ∨ y ∨ z) R1 = {0, 1}3 − {(1, 0, 0)}
(¬x ∨ ¬y ∨ z) R2 = {0, 1}3 − {(1, 1, 0)}
(¬x ∨ ¬y ∨ ¬z) R3 = {0, 1}3 − {(1, 1, 1)}

5 / 35

Example: Graph Colorability

3-Colorability: Given a graph G = (V ,E), is it 3-colorable?

3-Colorability as a constraint satisfaction problem:

I The variables are the nodes in V
I The domain is the set D = {R,G ,B} of three colors.
I For each edge (u, v) ∈ E , there is one constraint ((u, v),R),

where R is the the 6= relation on {R,G ,B}, i.e.,

R = {(R,G), (G ,R), (R,B), (B,R), (B,G), (G ,B)}.

6 / 35

Algebraic Formulation of Constraint Satisfaction

Feder and Vardi - 1993:
Constraint Satisfaction ≡ Homomorphism Problem.

I A homomorphism between two relational structures A and B
is a function h : A→ B such that for every relation symbol R
in the vocabulary and every (a1, . . . , an) ∈ An,

(a1, . . . , an) ∈ RA =⇒ (h(a1), . . . , h(an)) ∈ RB.

I Every finite relational structure B, gives rise to a constraint
satisfaction problem CSP(B): Given a finite relational
structure A, is there a homomorphism h : A→ B?

I Conversely, every constraint satisfaction problem can be
identified with a CSP(B), for some suitable B.

7 / 35

Constraint Satisfaction and the Homomorphism Problem

I 3-Colorability = CSP(K3), there K3 is the clique with 3
elements.

I k-Colorability = CSP(Kk), there Kk is the clique with k
elements, k ≥ 2.

I Positive NAE 3-Sat: Given a 3-CNF formula with only
positive literals, is there a satisfying truth assignment such
that in each clause not every variable is assigned value 1?

Positive NAE 3-Sat = CSP(B), where
– B = ({0, 1},RB) with RB = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)};
– each 3-CNF formula ϕ with only positive literals is encoded
as A(ϕ), where RA(ϕ) = {(x , y , z) : x ∨ y ∨ z is a clause in ϕ}.

8 / 35

Constraint Satisfaction and the Homomorphism Problem

I 3-Colorability = CSP(K3), there K3 is the clique with 3
elements.

I k-Colorability = CSP(Kk), there Kk is the clique with k
elements, k ≥ 2.

I Positive NAE 3-Sat: Given a 3-CNF formula with only
positive literals, is there a satisfying truth assignment such
that in each clause not every variable is assigned value 1?

Positive NAE 3-Sat = CSP(B), where
– B = ({0, 1},RB) with RB = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)};
– each 3-CNF formula ϕ with only positive literals is encoded
as A(ϕ), where RA(ϕ) = {(x , y , z) : x ∨ y ∨ z is a clause in ϕ}.

8 / 35

Computational Complexity of Constraint Satisfaction

Fact:
I CSP(B) is in NP, for every B.
I CSP(K2) (i.e., 2-Colorability) is in PTIME.
I CSP(Kk) (i.e., k-Colorability) is NP-complete, for every

k ≥ 3.

Feder-Vardi Dichotomy Conjecture - 1993
For every B, one of the following two holds:

I CSP(B) is in PTIME.
I CSP(B) is NP-complete.

9 / 35

Computational Complexity of Constraint Satisfaction

Fact:
I CSP(B) is in NP, for every B.
I CSP(K2) (i.e., 2-Colorability) is in PTIME.
I CSP(Kk) (i.e., k-Colorability) is NP-complete, for every

k ≥ 3.

Feder-Vardi Dichotomy Conjecture - 1993
For every B, one of the following two holds:

I CSP(B) is in PTIME.
I CSP(B) is NP-complete.

9 / 35

The Fine Structure of NP
Theorem (Ladner - 1975)
If PTIME 6= NP, then there is a decision problem Q such that

I Q is in NP, but not in PTIME.
I Q is not NP-complete.

NP-complete
not NP-complete, not in PTIME

PTIME

Feder-Vardi Dichotomy Conjecture

↗ NP-complete
CSP(B) not NP-complete, not in PTIME

↘ PTIME

10 / 35

The Fine Structure of NP
Theorem (Ladner - 1975)
If PTIME 6= NP, then there is a decision problem Q such that

I Q is in NP, but not in PTIME.
I Q is not NP-complete.

NP-complete
not NP-complete, not in PTIME

PTIME

Feder-Vardi Dichotomy Conjecture

↗ NP-complete
CSP(B) not NP-complete, not in PTIME

↘ PTIME

10 / 35

Feder-Vardi Dichotomy Conjecture

Fact: Several special cases of this conjecture have been confirmed.

I B is an undirected graph (Hell-Nešeťril - 1990).
I B is a Boolean structure, i.e., |B| = 2 (Schaefer - 1978).
I B is a three-element structure, i.e., |B| = 3 (Bulatov - 2006).

Fact: The study of constraint satisfaction has been a meeting
point of computational complexity, logic, and universal algebra.

11 / 35

Constraint Satisfaction and Logic
Fact:

I Each CSP(B) is expressible in Σ1
1 (Existential SO Logic).

I Feder and Vardi identified a natural fragment of monadic Σ1
1

that, in a precise sense “captures” constraint satisfaction.

Motivating Example:
I Recall that Positive NAE 3-Sat = CSP(B), where

B = ({0, 1},RB) with RB = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)};
I Positive NAE 3-Sat is definable by the Σ1

1-sentence:

∃S ∀x , y , z(R(x , y , z)→ (S(x) ∨ S(y) ∨ S(z)) ∧ (¬S(x) ∨ ¬S(y) ∨ ¬S(z))).

Definition: MMSNP is the fragment of monadic Σ1
1 such that

I all first-order quantifiers are universal;
I no inequalities 6= occur;
I relation symbols from the vocabulary occur only negatively.

12 / 35

Constraint Satisfaction and Logic
Fact:

I Each CSP(B) is expressible in Σ1
1 (Existential SO Logic).

I Feder and Vardi identified a natural fragment of monadic Σ1
1

that, in a precise sense “captures” constraint satisfaction.
Motivating Example:

I Recall that Positive NAE 3-Sat = CSP(B), where
B = ({0, 1},RB) with RB = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)};

I Positive NAE 3-Sat is definable by the Σ1
1-sentence:

∃S ∀x , y , z(R(x , y , z)→ (S(x) ∨ S(y) ∨ S(z)) ∧ (¬S(x) ∨ ¬S(y) ∨ ¬S(z))).

Definition: MMSNP is the fragment of monadic Σ1
1 such that

I all first-order quantifiers are universal;
I no inequalities 6= occur;
I relation symbols from the vocabulary occur only negatively.

12 / 35

Constraint Satisfaction and Logic
Fact:

I Each CSP(B) is expressible in Σ1
1 (Existential SO Logic).

I Feder and Vardi identified a natural fragment of monadic Σ1
1

that, in a precise sense “captures” constraint satisfaction.
Motivating Example:

I Recall that Positive NAE 3-Sat = CSP(B), where
B = ({0, 1},RB) with RB = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)};

I Positive NAE 3-Sat is definable by the Σ1
1-sentence:

∃S ∀x , y , z(R(x , y , z)→ (S(x) ∨ S(y) ∨ S(z)) ∧ (¬S(x) ∨ ¬S(y) ∨ ¬S(z))).

Definition: MMSNP is the fragment of monadic Σ1
1 such that

I all first-order quantifiers are universal;
I no inequalities 6= occur;
I relation symbols from the vocabulary occur only negatively.

12 / 35

MMSNP vs. Constraint Satisfaction

Definition: Let ψ be an MMSNP-sentence. The model checking
problem MC(ψ) of ψ asks: Given a structure A, does A |= ψ?

Theorem (Feder-Vardi 1993, Kun-Nešeťril 2008)
I For every B, there is an MMSNP-sentence ψ such that

CSP(B) = MC(ψ).
I For every MMSNP-sentence ψ, there is a structure B such

that MC(ψ) is PTIME-equivalent to CSP(B).

Corollary: There is a dichotomy in the complexity of constraint
satisfaction if and only if there is a dichotomy in the complexity of
the model checking problem for MMSNP.

13 / 35

Dependence logic

Fact: Various notions of dependence and independence are
encountered in computer science and mathematics:

I Functional dependencies in relational databases;
I Independence in linear algebra;
I Independence in probability theory.

Fact: Dependence logic is a formalism for expressing and analyzing
notions of dependence and independence.

I It was introduced by Jouko Väänänen in 2007.
I The origins of dependence logic can be traced to partially

ordered quantifiers (Henkin - 1961) and independence-friendly
logic (Hintikka-Sandu - 1989).

14 / 35

Relational Databases and Database Dependencies

In 1970, E.F. Codd introduced the relational database model.
I A relational database is a finite collection R1, . . . ,Rm of finite

relations.
I Every relation Ri can be thought of as a table; the columns of

each table have names, called attributes.
TEACHES(instructor, course, term)

I In general, data are not arbitrary; instead, data obey certain
semantic restrictions that are called database dependencies.

I Functional Dependencies (FDs) are the most widely used and
extensively studied database dependencies.

15 / 35

Functional Dependencies

Definition: R a relation, X and Y lists of attributes of R.
I R satisfies the functional dependency X → Y if for all tuples

s and s ′ in R such that s[X] = s ′[X], we have s[Y] = s ′[Y].
I Informally, the values of the attributes in Y are a function of

the values of the attributes in X .

Examples: TEACHES(instructor, course, term)
I instructor, term → course holds if no instructor teaches more

than one courses each term.
I course, term → instructor holds if no course in a given term is

taught by more than one instructors.

16 / 35

The Implication Problem for Functional Dependencies

Definition: Σ a set of FDs, X → Y a FD.
Σ |= X → Y if for every relation R that satisfies every FD in Σ, we
have that R satisfies X → Y .

Examples: Armstrong’s Axioms - 1974
I Reflexivity: If Y ⊆ X , then |= X → Y .
I Augmentation: X → Y |= XZ → YZ , for every Z .
I Transitivity: {X → Y , Y → Z} |= X → Z .

Theorem (Beeri-Bernstein - 1979)
The implication problem for functional dependencies is solvable in
linear time.

17 / 35

Functional Dependencies and Dependence Logic

Characteristics of Dependence Logic:
I Functional dependencies form the basic building blocks of

Dependence Logic: they are atoms with the attributes as their
free variables.

I Dependence Logic augments functional dependencies with the
standard constructs of first-order logic, i.e., with Boolean
connectives and first-order quantifiers.

Differences between Dependence Logic and First-Order Logic
I Team semantics, instead of Tarskian semantics
I Second-order interpretation of disjunction.

18 / 35

The Main Ingredients of Dependence Logic
Team Semantics

I Tarskian semantics: structure A, formula ϕ, assignment s of
values from B to the free variables of ϕ.

I Single asssigments cannot give meaning to an FD X → Y .
A set of assignments, i.e., a relation R is needed to give
meaning to X → Y . Sets of assignments are called teams.

Semantics of Disjunction: What does it mean to say that
R |= (instructor, term→ course) ∨ (course, term→ instructor)?
I Pedantic Answer:

R |= instructor, term→ course or
R |= course, term→ instructor.

I Imaginative Answer: There are R1,R2 s.t. R = R1 ∪ R2,
R1 |= instructor, term→ course and
R2 |= course, term→ instructor.

19 / 35

The Main Ingredients of Dependence Logic
Team Semantics

I Tarskian semantics: structure A, formula ϕ, assignment s of
values from B to the free variables of ϕ.

I Single asssigments cannot give meaning to an FD X → Y .
A set of assignments, i.e., a relation R is needed to give
meaning to X → Y . Sets of assignments are called teams.

Semantics of Disjunction: What does it mean to say that
R |= (instructor, term→ course) ∨ (course, term→ instructor)?

I Pedantic Answer:
R |= instructor, term→ course or
R |= course, term→ instructor.

I Imaginative Answer: There are R1,R2 s.t. R = R1 ∪ R2,
R1 |= instructor, term→ course and
R2 |= course, term→ instructor.

19 / 35

The Main Ingredients of Dependence Logic
Team Semantics

I Tarskian semantics: structure A, formula ϕ, assignment s of
values from B to the free variables of ϕ.

I Single asssigments cannot give meaning to an FD X → Y .
A set of assignments, i.e., a relation R is needed to give
meaning to X → Y . Sets of assignments are called teams.

Semantics of Disjunction: What does it mean to say that
R |= (instructor, term→ course) ∨ (course, term→ instructor)?
I Pedantic Answer:

R |= instructor, term→ course or
R |= course, term→ instructor.

I Imaginative Answer: There are R1,R2 s.t. R = R1 ∪ R2,
R1 |= instructor, term→ course and
R2 |= course, term→ instructor.

19 / 35

Dependence logic D: Syntax

Definition: Let τ be a relational vocabulary.
D(τ)-formulas are defined by the following grammar:

ϕ :: = x1 = x2 | ¬ (x1 = x2) | R(x1, . . . , xn) | ¬R(x1, . . . , xn) |
dep(x1, . . . , xn; y) | (ϕ1 ∧ ϕ2) | (ϕ1 ∨ ϕ2) | ∀xϕ | ∃xϕ,
where R ∈ τ .

Note:
I D(τ)-formulas are assumed to be in negation normal form:

negations may occur only in front of equality atoms or
relational atoms.

I Dependence atoms dep(x1, . . . , xn; y) occur only positively.

20 / 35

Dependence logic D: Team Semantics
Definition: A team on A is a set T of assignments s : V → A, for
some fixed set V = dom(T) of variables.

Team Semantics: A,T |= ϕ

I Atomic or negated atomic formula θ
A,T |= θ if A, s |= θ, for every s ∈ T .

I Dependence atom dep(xxx ; y)
A,T |= dep(x1, . . . , xn; y) if there is f : An → A such that for
all s ∈ T , we have that s(y) = f (s(x1), . . . , s(xn)).

I Conjunction
A,T |= ϕ ∧ ψ if A,T |= ϕ and A,T |= ψ.

I Disjunction
A,T |= ϕ ∨ ψ if there are T ′,T ′′ ⊆ T such that
T ′ ∪ T ′′ = T , A,T ′ |= ϕ, A,T ′′ |= ψ.

21 / 35

Dependence logic D: Team Semantics (continued)

Team Semantics: A,T |= ϕ

I Universal quantifier
A,T |= ∀xψ if A,T [A/x] |= ψ,
where
T [A/x] = {s[a/x] : s ∈ T , a ∈ A}.

I Existential quantifier
A,T |= ∃xψ if there is F : T → A such that A,T [F/x] |= ψ,
where
T [F/x] = {s[F (s)/x] : s ∈ T}.

I If ψ is a D-sentence, then A |= ψ if A, {∅} |= ψ.

22 / 35

Dependence logic: Expressive Power

Theorem (Väänänen - 2007)
For sentences, D = Σ1

1 (Existential Second-Order Logic)

Fagin’s Theorem - 1974
On the class of all finite structures, Σ1

1 = NP.

Corollary:
On the class of all finite structures, D = NP. Hence,
every constraint satisfaction problem CSP(B) is D-definable.

Theorem (Jarmo Kontinen - 2013)
3-Sat is polynomial-time reducible to the model-checking problem
of the quantifier-free D-formula

dep(x ; y) ∨ dep(u; v) ∨ dep(u; v).

23 / 35

Dependence logic: Expressive Power

Theorem (Väänänen - 2007)
For sentences, D = Σ1

1 (Existential Second-Order Logic)

Fagin’s Theorem - 1974
On the class of all finite structures, Σ1

1 = NP.

Corollary:
On the class of all finite structures, D = NP. Hence,
every constraint satisfaction problem CSP(B) is D-definable.

Theorem (Jarmo Kontinen - 2013)
3-Sat is polynomial-time reducible to the model-checking problem
of the quantifier-free D-formula

dep(x ; y) ∨ dep(u; v) ∨ dep(u; v).

23 / 35

Dependence logic: Expressive Power

Theorem (Väänänen - 2007)
For sentences, D = Σ1

1 (Existential Second-Order Logic)

Fagin’s Theorem - 1974
On the class of all finite structures, Σ1

1 = NP.

Corollary:
On the class of all finite structures, D = NP. Hence,
every constraint satisfaction problem CSP(B) is D-definable.

Theorem (Jarmo Kontinen - 2013)
3-Sat is polynomial-time reducible to the model-checking problem
of the quantifier-free D-formula

dep(x ; y) ∨ dep(u; v) ∨ dep(u; v).

23 / 35

Constraint Satisfaction vs. Dependence Logic

Question:
What is the exact connection between dependence logic and
constraint satisfaction?

Main Result:
There is natural fragment of dependence logic that, in a precise
sense, captures exactly the class of all constraint satifaction
problems CSP(B).

24 / 35

Constraint Satisfaction vs. Dependence Logic

Question:
What is the exact connection between dependence logic and
constraint satisfaction?

Main Result:
There is natural fragment of dependence logic that, in a precise
sense, captures exactly the class of all constraint satifaction
problems CSP(B).

24 / 35

Uniform Dependence Atoms

Uniform dependence atom: udep(x1, . . . , xn; y1, . . . , yn)

Semantics: A,T |= udep(x1, . . . , xn; y1, . . . , yn) if there is a unary
function g : A→ A such that for every s ∈ T , we have that

s(y1) = g(s(x1)), . . . , s(yn) = g(s(xn)).

Uniform k-valued dependence atom:
udep[k](x1, . . . , xn;α1, . . . , αn), where α1, . . . , αn are k-valued
variables ranging over the set [k] = {1, . . . , k}.

Semantics: A,T |= udep[k](x1, . . . , xn;α1, . . . , αn) if there is a
unary function h : A→ [k] such that for every s ∈ T , we have that

s(α1) = h(s(x1)), . . . , s(αn) = h(s(xn)).

25 / 35

Uniform Dependence Atoms

Uniform dependence atom: udep(x1, . . . , xn; y1, . . . , yn)

Semantics: A,T |= udep(x1, . . . , xn; y1, . . . , yn) if there is a unary
function g : A→ A such that for every s ∈ T , we have that

s(y1) = g(s(x1)), . . . , s(yn) = g(s(xn)).

Uniform k-valued dependence atom:
udep[k](x1, . . . , xn;α1, . . . , αn), where α1, . . . , αn are k-valued
variables ranging over the set [k] = {1, . . . , k}.

Semantics: A,T |= udep[k](x1, . . . , xn;α1, . . . , αn) if there is a
unary function h : A→ [k] such that for every s ∈ T , we have that

s(α1) = h(s(x1)), . . . , s(αn) = h(s(xn)).

25 / 35

Universal Monotone Uniform Dependence Logic

I QF-MUD[k]: Quantifier-free monotone dependence logic with
uniform k-valued dependence atoms

ϕ :: = α = i | ¬R(xxx) | udep[k](xxx ;ααα) | (ϕ1 ∧ ϕ2) | (ϕ1 ∨ ϕ2),

where i ∈ [k].

I QF-MUD =
⋃

k≥1 QF-MUD[k].

I ∀-MUD[k]: Universal monotone dependence logic with
uniform k-valued dependence atoms

ϕ :: = ψ | ∀xϕ | ∀αϕ,

where ψ ∈ QF-MUD[k].

I ∀-MUD =
⋃

k≥1 ∀-MUD[k].

26 / 35

Universal Monotone Uniform Dependence Logic

ϕ :: = α = i | ¬R(xxx) | udep[k](xxx ;ααα) | (ϕ1 ∧ ϕ2) | (ϕ1 ∨ ϕ2)
∀xϕ | ∀αϕ.

Remarks:
I Analogously to MMSNP, the logics QF-MUD and ∀-MUD

allow no inequalities and only negative occurrences of R ∈ τ .
I udep[k](x1, . . . , xn;α1, . . . , αn) is expressed by the D-formula

∀y∃β
(
dep(y ;β) ∧

∧
i∈[n](y = xi → β = αi)

)
.

This formula violates the syntactic restrictions of ∀-MUD[k]:
– It contains existential quantification;
– It contains inequalities between first-order variables.

27 / 35

Constraint Satisfaction vs. Dependence Logic

Theorem: Constraint Satisfaction is PTIME-equivalent to the
Model Checking Problem for ∀-MUD.

I For every structure B, there is a ∀-MUD-sentence ϕB such
that CSP(B) is PTIME-equivalent to MC(ϕB).

I For every ∀-MUD-sentence ϕ, there is a structure Bϕ such
that MC(ϕ) is PTIME-equivalent to CSP(Bϕ).

Corollary: The Feder-Vardi Dichotomy Conjecture for CSP(B)
holds if and only if a dichotomy in the complexity of the Model
Checking Problem for ∀-MUD holds.

28 / 35

From Constraint Satisfaction to Dependence Logic

Theorem A: (∀-MUD captures CSP)
Assume that τ = {R}. For every τ -structure C with |C | = k, there
is a ∀-MUD[k]-sentence ϕC such that for every τ -structure A,

A ∈ CSP(C) if and only if A |= ϕC.

Theorem: (Feder-Vardi - 1993)
For every structure B, there is a structure C over a vocabulary
with a single binary relation symbol such that CSP(B) is
PTIME-equivalent to CSP(C).

Corollary: For every structure B, there is a ∀-MUD-sentence ϕB
such that CSP(B) is PTIME-equivalent to MC(ϕB).

29 / 35

From Constraint Satisfaction to Dependence Logic

Theorem A: (∀-MUD captures CSP)
Assume that τ = {R}. For every τ -structure C with |C | = k, there
is a ∀-MUD[k]-sentence ϕC such that for every τ -structure A,

A ∈ CSP(C) if and only if A |= ϕC.

Theorem: (Feder-Vardi - 1993)
For every structure B, there is a structure C over a vocabulary
with a single binary relation symbol such that CSP(B) is
PTIME-equivalent to CSP(C).

Corollary: For every structure B, there is a ∀-MUD-sentence ϕB
such that CSP(B) is PTIME-equivalent to MC(ϕB).

29 / 35

From Constraint Satisfaction to Dependence Logic

I To prove Theorem A, it suffices to find a QF-MUD[k]-formula
θC such that A ∈ CSP(C) if and only if A,F |= θC, where
F is the full team consisting of all assignments

s : {x1, . . . , xn, α1, . . . , αn} → A ∪ [k].
This is so because A,F |= θC if and only if A |= ϕC, where ϕC
is the sentence ∀xxx∀ααα θC.

I Observe next that if A,T |= udep[k](xxx ,ααα), then there is a
homomorphism h : (A,RT ,xxx)→ ([k],RT ,ααα), where
RT ,xxx is the relation {s(xxx) : s ∈ T}, and similarly for RT ,ααα.
Thus, if RA ⊆ RT ,xxx and RT ,ααα ⊆ RC, then A ∈ CSP(C).

I The idea of the proof is to build θC using disjunctions in such
a way that if A,F |= θC, then there is a subteam T of F
satisfying the conditions above.

30 / 35

From Constraint Satisfaction to Dependence Logic
Example: Positive 1-in-3 3-Sat = CSP(B), where

B = ({0, 1},RB) with RB = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
Here, we have that
ϕB := ∀x1∀x2∀x3∀α1∀α2∀α3

(
(ηB ∧ ψB) ∨ ¬R(x1, x2, x3) ∨ νB

)
,

where

I ηB := udep[2](x3;α3) ∨ (α3 = 0 ∧ udep[2](x2;α2))
∨udep[2](x1, x2, x3;α1, α2, α3)

I ψB := (α1 = 1 ∧ α2 = 0 ∧ α3 = 0) ∨
(α1 = 0 ∧ α2 = 1 ∧ α3 = 0) ∨ (α1 = 0 ∧ α2 = 0 ∧ α3 = 1)

I νB := (α1 = 1 ∧ α2 = 1 ∧ α3 = 1) ∨ (α1 = 0 ∧ α2 = 0 ∧ α3 = 0) ∨
(α1 = 1 ∧ α2 = 1 ∧ α3 = 0) ∨ (α1 = 1 ∧ α2 = 0 ∧ α3 = 1) ∨
(α1 = 0 ∧ α2 = 1 ∧ α3 = 1).

31 / 35

From Dependence Logic to Constraint Satisfaction

Theorem B: (MMSNP is at least as expressive as ∀-MUD)
For every ∀-MUD-sentence ϕ be a sentence, there is a
MMSNP-sentence ϕ∗ such that for every structure A

A |= ϕ if and only if A |= ϕ∗.

Recall the following result:

Theorem (Feder-Vardi - 1993)
For every MMSNP-sentence ψ, there is a structure B such that
MC(ψ) is equivalent to CSP(B) via PTIME-reductions.

Corollary: For every ∀-MUD-sentence ϕ, there is a structure Bϕ

such that MC(ϕ) is PTIME-equivalent to CSP(Bϕ).

32 / 35

From Dependence Logic to MMSNP

I To prove Theorem B, translate inductively QF-MUD[k] to the
extension of MMSNP with k-valued variables.

I The translation of each QF-MUD-formula ψ is of the form
∃P∀xxx∀yyy∀ααα(R(xxxααα)→ ψ+),

where ψ+ is quantifier free. Here, R is an extra relation
symbol interpreted by the team on which ψ is evaluated.

I One can prove that
A,T |= ψ iff (A,RT ,xxxααα) |= ∃P∀xxx∀yyy∀ααα(R(xxxααα)→ ψ+).

I This extends easily to ∀-MUD[k]-sentences
A |= ∀xxx∀αααψ iff A |= ∃P∀xxx∀yyy∀αααψ+.

I Theorem B follows from this, as the k-valued variables can be
easily eliminated from sentences of MMSNP.

33 / 35

Concluding Remarks

I We identified a fragment of dependence logic that captures
constraint satisfaction, up to polynomial-time equivalence.

I This result implies that a complexity classification of the
model checking problem for universal dependence logic is at
least as hard as settling the Feder-Vardi dichotomy conjecture
for constraint satisfaction.

I What is the exact expressive power of ∀-MUD?
I Is CSP(B) definable in ∀-MUD for every B?
I Is ∀-MUD a proper fragment of MMSNP?

34 / 35

