
Back and Forth Between Team Semantics,
Games, and Tarski Semantics

Erich Grädel

Berkeley Logic Colloquium, October

Erich Grädel Team Semantics, Games, and Tarski Semantics

Outline

Team semantics and logics of dependence and independence

Expressive power via translations into existential second-order logic

Model checking games for logics with team semantics

Inclusion logic, safety games, and greatest fixed-point logic.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Dependence and independence

What does it mean that “x depends on y” or that “x and y are independent” ?

Compare this to similarly looking statements such as “x divides y”.

To make sense of this we fix a structure A in which the notion of divisibility is
well-defined and an assignment s ∶ {x , y}→ A and use Tarski-style semantics
to determine whether A ⊧s “x divides y”.

Dependence and independence are notions of a different kind!�ey manifest
themselves not in single assignments, but only in larger amounts of data:
- tables or relations
- sets of plays in a game (e.g. strategies)
- sets of assignments.

A set of assigments (all with the same domain of variables) is called a team.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Dependence and independence

What does it mean that “x depends on y” or that “x and y are independent” ?

Compare this to similarly looking statements such as “x divides y”.

To make sense of this we fix a structure A in which the notion of divisibility is
well-defined and an assignment s ∶ {x , y}→ A and use Tarski-style semantics
to determine whether A ⊧s “x divides y”.

Dependence and independence are notions of a different kind!�ey manifest
themselves not in single assignments, but only in larger amounts of data:
- tables or relations
- sets of plays in a game (e.g. strategies)
- sets of assignments.

A set of assigments (all with the same domain of variables) is called a team.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Dependence and independence

What does it mean that “x depends on y” or that “x and y are independent” ?

Compare this to similarly looking statements such as “x divides y”.

To make sense of this we fix a structure A in which the notion of divisibility is
well-defined and an assignment s ∶ {x , y}→ A and use Tarski-style semantics
to determine whether A ⊧s “x divides y”.

Dependence and independence are notions of a different kind!�ey manifest
themselves not in single assignments, but only in larger amounts of data:
- tables or relations
- sets of plays in a game (e.g. strategies)
- sets of assignments.

A set of assigments (all with the same domain of variables) is called a team.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Dependence and independence

What does it mean that “x depends on y” or that “x and y are independent” ?

Compare this to similarly looking statements such as “x divides y”.

To make sense of this we fix a structure A in which the notion of divisibility is
well-defined and an assignment s ∶ {x , y}→ A and use Tarski-style semantics
to determine whether A ⊧s “x divides y”.

Dependence and independence are notions of a different kind!�ey manifest
themselves not in single assignments, but only in larger amounts of data:
- tables or relations
- sets of plays in a game (e.g. strategies)
- sets of assignments.

A set of assigments (all with the same domain of variables) is called a team.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Logics of dependence and independence

Henkin, Enderton, Walkoe, . . . : partially ordered (or Henkin-) quantifiers
Hintikka and Sandu: Independence-friendly (IF) logic with explicit
dependencies of quantifiers on each other

Semantics in terms of games with imperfect information

Claim: Impossibility of model-theoretic (compositional) semantics
never made precise, never proved

Hodges: model-theoretic semantics for IF-logic

Difference to Tarski semantics: a formula is not evaluated against a single
assignment but against a set of assignments

�is kind of semantics is an important achievement of independent interest.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Logics of dependence and independence

Henkin, Enderton, Walkoe, . . . : partially ordered (or Henkin-) quantifiers
Hintikka and Sandu: Independence-friendly (IF) logic with explicit
dependencies of quantifiers on each other

Semantics in terms of games with imperfect information

Claim: Impossibility of model-theoretic (compositional) semantics
never made precise, never proved

Hodges: model-theoretic semantics for IF-logic

Difference to Tarski semantics: a formula is not evaluated against a single
assignment but against a set of assignments

�is kind of semantics is an important achievement of independent interest.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Logics of dependence and independence

Henkin, Enderton, Walkoe, . . . : partially ordered (or Henkin-) quantifiers
Hintikka and Sandu: Independence-friendly (IF) logic with explicit
dependencies of quantifiers on each other

Semantics in terms of games with imperfect information

Claim: Impossibility of model-theoretic (compositional) semantics
never made precise, never proved

Hodges: model-theoretic semantics for IF-logic

Difference to Tarski semantics: a formula is not evaluated against a single
assignment but against a set of assignments

�is kind of semantics is an important achievement of independent interest.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Logics of dependence and independence

Modern framework: Do not state dependencies as annotations of quantifiers,
but treat them as atomic statements on teams (Väänänen)

Dependence:
⊧X =(x , y) ∶⇐⇒ (∀s ∈ X)(∀s′ ∈ X)(s(x) = s′(x)→ s(y) = s′(y))

Inclusion:
⊧X (x ⊆ y) ∶⇐⇒ (∀s ∈ X)(∃s′ ∈ X)(s(x) = s′(y))

Exclusion:
⊧X (x ∣ y) ∶⇐⇒ (∀s ∈ X)(∀s′ ∈ X)(s(x) ≠ s′(y))

Independence:
⊧X (x�y) ∶⇐⇒ X(xy) = X(x) × X(y)

Here X(x) is the set of all values s(x) for s ∈ X.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Dependence atoms

Dependence atoms are expressions =(x , y).

Semantics: Let A be a structure and X a team of assignments s ∶ V → A.

A ⊧X =(x , y) if y depends on x in A and X.

�is means that for all s, s′ ∈ X,
n
⋀
i=

s(xi) = s′(xi) Ô⇒ s(y) = s′(y)

Expanded form of dependence atoms =(x , y) saying that all variables of y
depend on x.

Dependence atoms are downwards closed.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Dependence atoms

Dependence atoms are expressions =(x , y).

Semantics: Let A be a structure and X a team of assignments s ∶ V → A.

A ⊧X =(x , y) if y depends on x in A and X.

�is means that for all s, s′ ∈ X,
n
⋀
i=

s(xi) = s′(xi) Ô⇒ s(y) = s′(y)

Expanded form of dependence atoms =(x , y) saying that all variables of y
depend on x.

Dependence atoms are downwards closed.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Dependence atoms

Dependence atoms are expressions =(x , y).

Semantics: Let A be a structure and X a team of assignments s ∶ V → A.

A ⊧X =(x , y) if y depends on x in A and X.

�is means that for all s, s′ ∈ X,
n
⋀
i=

s(xi) = s′(xi) Ô⇒ s(y) = s′(y)

Expanded form of dependence atoms =(x , y) saying that all variables of y
depend on x.

Dependence atoms are downwards closed.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Independence atoms

Definition. A team X satisfies the atom x � y if

(∀s, s′ ∈ X)(∃s′′ ∈ X)(s′′(x) = s(x) ∧ s′′(y) = s′(y))

Suppose you know X and you know that s is some assignment in X.
You want to gather information about s(y). What you know is that
s(y) ∈ X(y) ∶= {a ∶ a = s′(y) for some s′ ∈ X}.

Suppose that I tell you s(x) where x � y.
You cannot infer anything new about s(y). Indeed, for all potential values
a ∈ X(y) there is an assignment s′′ ∈ X with s′′(x) = s(x) and s′′(y) = a.

Generalizes to independence atoms x � y on tuples of variables.

Notice that x � y holds in X iff X(xy) = X(x) × X(y).

Erich Grädel Team Semantics, Games, and Tarski Semantics

Independence atoms

Definition. A team X satisfies the atom x � y if

(∀s, s′ ∈ X)(∃s′′ ∈ X)(s′′(x) = s(x) ∧ s′′(y) = s′(y))

Suppose you know X and you know that s is some assignment in X.
You want to gather information about s(y). What you know is that
s(y) ∈ X(y) ∶= {a ∶ a = s′(y) for some s′ ∈ X}.

Suppose that I tell you s(x) where x � y.
You cannot infer anything new about s(y). Indeed, for all potential values
a ∈ X(y) there is an assignment s′′ ∈ X with s′′(x) = s(x) and s′′(y) = a.

Generalizes to independence atoms x � y on tuples of variables.

Notice that x � y holds in X iff X(xy) = X(x) × X(y).

Erich Grädel Team Semantics, Games, and Tarski Semantics

Independence atoms

Definition. A team X satisfies the atom x � y if

(∀s, s′ ∈ X)(∃s′′ ∈ X)(s′′(x) = s(x) ∧ s′′(y) = s′(y))

Suppose you know X and you know that s is some assignment in X.
You want to gather information about s(y). What you know is that
s(y) ∈ X(y) ∶= {a ∶ a = s′(y) for some s′ ∈ X}.

Suppose that I tell you s(x) where x � y.
You cannot infer anything new about s(y). Indeed, for all potential values
a ∈ X(y) there is an assignment s′′ ∈ X with s′′(x) = s(x) and s′′(y) = a.

Generalizes to independence atoms x � y on tuples of variables.

Notice that x � y holds in X iff X(xy) = X(x) × X(y).

Erich Grädel Team Semantics, Games, and Tarski Semantics

Independence atoms

Definition. A team X satisfies the atom x � y if

(∀s, s′ ∈ X)(∃s′′ ∈ X)(s′′(x) = s(x) ∧ s′′(y) = s′(y))

Suppose you know X and you know that s is some assignment in X.
You want to gather information about s(y). What you know is that
s(y) ∈ X(y) ∶= {a ∶ a = s′(y) for some s′ ∈ X}.

Suppose that I tell you s(x) where x � y.
You cannot infer anything new about s(y). Indeed, for all potential values
a ∈ X(y) there is an assignment s′′ ∈ X with s′′(x) = s(x) and s′′(y) = a.

Generalizes to independence atoms x � y on tuples of variables.

Notice that x � y holds in X iff X(xy) = X(x) × X(y).

Erich Grädel Team Semantics, Games, and Tarski Semantics

Exclusion and inclusion dependencies

Exclusion dependencies:

⊧X (x ∣ y) ∶⇐⇒ (∀s ∈ X)(∀s′ ∈ X)(s(x) ≠ s′(y))

�e variables x and y have no common values in X: X(x) ∩ X(y) = ∅.

Inclusion dependencies:

⊧X (x ⊆ y) ∶⇐⇒ (∀s ∈ X)(∃s′ ∈ X)(s(x) = s′(y))

Every value of x in the team X appears also as a value for y in X: X(x) ⊆ X(y).

Erich Grädel Team Semantics, Games, and Tarski Semantics

Exclusion and inclusion dependencies

Exclusion dependencies:

⊧X (x ∣ y) ∶⇐⇒ (∀s ∈ X)(∀s′ ∈ X)(s(x) ≠ s′(y))

�e variables x and y have no common values in X: X(x) ∩ X(y) = ∅.

Inclusion dependencies:

⊧X (x ⊆ y) ∶⇐⇒ (∀s ∈ X)(∃s′ ∈ X)(s(x) = s′(y))

Every value of x in the team X appears also as a value for y in X: X(x) ⊆ X(y).

Erich Grädel Team Semantics, Games, and Tarski Semantics

Logics of dependence and independence

Combine such atoms with logical connectives and quantifiers to obtain
full-fledged logics for reasoning about dependence and independence.

Dependence logic: FO + dependence atoms =(x , y)

Independence logic: FO + independence atoms x�y

Inclusion logic: FO + inclusion atoms (x ⊆ y) and so on.

Note: Formulae are always assumed to be in negation normal form

All these logics require team semantics.

What precisely does it mean that, A ⊧X ψ(x) ?

Erich Grädel Team Semantics, Games, and Tarski Semantics

Logics of dependence and independence

Combine such atoms with logical connectives and quantifiers to obtain
full-fledged logics for reasoning about dependence and independence.

Dependence logic: FO + dependence atoms =(x , y)

Independence logic: FO + independence atoms x�y

Inclusion logic: FO + inclusion atoms (x ⊆ y) and so on.

Note: Formulae are always assumed to be in negation normal form

All these logics require team semantics.

What precisely does it mean that, A ⊧X ψ(x) ?

Erich Grädel Team Semantics, Games, and Tarski Semantics

Logics of dependence and independence

Combine such atoms with logical connectives and quantifiers to obtain
full-fledged logics for reasoning about dependence and independence.

Dependence logic: FO + dependence atoms =(x , y)

Independence logic: FO + independence atoms x�y

Inclusion logic: FO + inclusion atoms (x ⊆ y) and so on.

Note: Formulae are always assumed to be in negation normal form

All these logics require team semantics.

What precisely does it mean that, A ⊧X ψ(x) ?

Erich Grädel Team Semantics, Games, and Tarski Semantics

Team semantics for first-order logic

A ⊧X ψ(y) ⇐⇒ A ⊧s ψ(y) for all s ∈ X

A ⊧X ψ ∧ φ ∶⇐⇒ for all s ∈ X, A ⊧s ψ and A ⊧s φ

A ⊧X ψ ∨ φ ∶⇐⇒ for all s ∈ X, A ⊧s ψ or A ⊧s φ

A ⊧X ∃yψ ∶⇐⇒ for all s ∈ X there exist a ∈ Awith A ⊧s[y↦a] ψ

A ⊧X ∀yψ ∶⇐⇒ for all s ∈ X and all a ∈ A, A ⊧s[y↦a] ψ

In the presence of dependency atoms this flatness property breaks down

We need an inductive definition, defining the team semantics of a composite
formula in terms of the team semantics of its building blocks.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Team semantics for first-order logic

A ⊧X ψ(y) ⇐⇒ A ⊧s ψ(y) for all s ∈ X

A ⊧X ψ ∧ φ ∶⇐⇒ for all s ∈ X, A ⊧s ψ and A ⊧s φ

A ⊧X ψ ∨ φ ∶⇐⇒ for all s ∈ X, A ⊧s ψ or A ⊧s φ

A ⊧X ∃yψ ∶⇐⇒ for all s ∈ X there exist a ∈ Awith A ⊧s[y↦a] ψ

A ⊧X ∀yψ ∶⇐⇒ for all s ∈ X and all a ∈ A, A ⊧s[y↦a] ψ

In the presence of dependency atoms this flatness property breaks down

We need an inductive definition, defining the team semantics of a composite
formula in terms of the team semantics of its building blocks.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Team semantics for first-order logic

A ⊧X ψ(y) ⇐⇒ A ⊧s ψ(y) for all s ∈ X

A ⊧X ψ ∧ φ ∶⇐⇒ for all s ∈ X, A ⊧s ψ and A ⊧s φ

A ⊧X ψ ∨ φ ∶⇐⇒ for all s ∈ X, A ⊧s ψ or A ⊧s φ

A ⊧X ∃yψ ∶⇐⇒ for all s ∈ X there exist a ∈ Awith A ⊧s[y↦a] ψ

A ⊧X ∀yψ ∶⇐⇒ for all s ∈ X and all a ∈ A, A ⊧s[y↦a] ψ

In the presence of dependency atoms this flatness property breaks down

We need an inductive definition, defining the team semantics of a composite
formula in terms of the team semantics of its building blocks.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Team semantics: inductive definition
For f.o.-literals ψ(y) ∶ A ⊧X ψ(y) ⇐⇒ A ⊧s ψ(y) for all s ∈ X

semantics of dependency atoms as defined above

A ⊧X ψ ∧ φ ∶⇐⇒ A ⊧X ψ and A ⊧X φ

A ⊧X ψ ∨ φ ∶⇐⇒ X = Y ∪ Z such that A ⊧Y ψ and A ⊧Z φ

A ⊧X ∃yψ ∶⇐⇒ ∃F ∶ X → P(A) ∖ {∅} such that A ⊧X[y↦F] ψ

A ⊧X ∀yψ ∶⇐⇒ A ⊧X[y↦A] ψ

Erich Grädel Team Semantics, Games, and Tarski Semantics

Team semantics: inductive definition
For f.o.-literals ψ(y) ∶ A ⊧X ψ(y) ⇐⇒ A ⊧s ψ(y) for all s ∈ X

semantics of dependency atoms as defined above

A ⊧X ψ ∧ φ ∶⇐⇒ A ⊧X ψ and A ⊧X φ

A ⊧X ψ ∨ φ ∶⇐⇒ X = Y ∪ Z such that A ⊧Y ψ and A ⊧Z φ

A ⊧X ∃yψ ∶⇐⇒ ∃F ∶ X → P(A) ∖ {∅} such that A ⊧X[y↦F] ψ

A ⊧X ∀yψ ∶⇐⇒ A ⊧X[y↦A] ψ

Erich Grädel Team Semantics, Games, and Tarski Semantics

Team semantics: inductive definition
For f.o.-literals ψ(y) ∶ A ⊧X ψ(y) ⇐⇒ A ⊧s ψ(y) for all s ∈ X

semantics of dependency atoms as defined above

A ⊧X ψ ∧ φ ∶⇐⇒ A ⊧X ψ and A ⊧X φ

A ⊧X ψ ∨ φ ∶⇐⇒ X = Y ∪ Z such that A ⊧Y ψ and A ⊧Z φ

A ⊧X ∃yψ ∶⇐⇒ ∃F ∶ X → P(A) ∖ {∅} such that A ⊧X[y↦F] ψ

A ⊧X ∀yψ ∶⇐⇒ A ⊧X[y↦A] ψ

Notice that (φ ∨ φ) is, in general, not equivalent to φ

An example from dependence logic:
=(y)means that the value of y is constant in the given team
=(y) ∨ =(y)means that y takes at most two values in the given team

Erich Grädel Team Semantics, Games, and Tarski Semantics

Team semantics: inductive definition
For f.o.-literals ψ(y) ∶ A ⊧X ψ(y) ⇐⇒ A ⊧s ψ(y) for all s ∈ X

semantics of dependency atoms as defined above

A ⊧X ψ ∧ φ ∶⇐⇒ A ⊧X ψ and A ⊧X φ

A ⊧X ψ ∨ φ ∶⇐⇒ X = Y ∪ Z such that A ⊧Y ψ and A ⊧Z φ

A ⊧X ∃yψ ∶⇐⇒ ∃F ∶ X → P(A) ∖ {∅} such that A ⊧X[y↦F] ψ

A ⊧X ∀yψ ∶⇐⇒ A ⊧X[y↦A] ψ

Notice that (φ ∨ φ) is, in general, not equivalent to φ

An example from dependence logic:
=(y)means that the value of y is constant in the given team
=(y) ∨ =(y)means that y takes at most two values in the given team

Erich Grädel Team Semantics, Games, and Tarski Semantics

Team semantics: inductive definition
For f.o.-literals ψ(y) ∶ A ⊧X ψ(y) ⇐⇒ A ⊧s ψ(y) for all s ∈ X

semantics of dependency atoms as defined above

A ⊧X ψ ∧ φ ∶⇐⇒ A ⊧X ψ and A ⊧X φ

A ⊧X ψ ∨ φ ∶⇐⇒ X = Y ∪ Z such that A ⊧Y ψ and A ⊧Z φ

A ⊧X ∃yψ ∶⇐⇒ ∃F ∶ X → P(A) ∖ {∅} such that A ⊧X[y↦F] ψ

A ⊧X ∀yψ ∶⇐⇒ A ⊧X[y↦A] ψ

Notice that (φ ∨ φ) is, in general, not equivalent to φ

An example from dependence logic:
=(y)means that the value of y is constant in the given team
=(y) ∨ =(y)means that y takes at most two values in the given team

Erich Grädel Team Semantics, Games, and Tarski Semantics

Team semantics: inductive definition

For f.o.-literals ψ(y) ∶ A ⊧X ψ(y) ⇐⇒ A ⊧s ψ(y) for all s ∈ X

semantics of dependency atoms as defined above

A ⊧X ψ ∧ φ ∶⇐⇒ A ⊧X ψ and A ⊧X φ

A ⊧X ψ ∨ φ ∶⇐⇒ X = Y ∪ Z such that A ⊧Y ψ and A ⊧Z φ

A ⊧X ∃yψ ∶⇐⇒ ∃F ∶ X → P(A) ∖ {∅} such that A ⊧X[y↦F] ψ

A ⊧X ∀yψ ∶⇐⇒ A ⊧X[y↦A] ψ

Choose (for every s ∈ X) an arbitrary non-empty set of witnesses for ∃x . . .
rather than just a single witness: lax semantics as opposed to strict semantics.

For FO and dependence logic the difference is immaterial, but for some other
logics, only lax semantics guarantees the locality principle:

A ⊧X φ ⇐⇒ A ⊧X↾free(φ) φ

Erich Grädel Team Semantics, Games, and Tarski Semantics

Team semantics: inductive definition

For f.o.-literals ψ(y) ∶ A ⊧X ψ(y) ⇐⇒ A ⊧s ψ(y) for all s ∈ X

semantics of dependency atoms as defined above

A ⊧X ψ ∧ φ ∶⇐⇒ A ⊧X ψ and A ⊧X φ

A ⊧X ψ ∨ φ ∶⇐⇒ X = Y ∪ Z such that A ⊧Y ψ and A ⊧Z φ

A ⊧X ∃yψ ∶⇐⇒ ∃F ∶ X → P(A) ∖ {∅} such that A ⊧X[y↦F] ψ

A ⊧X ∀yψ ∶⇐⇒ A ⊧X[y↦A] ψ

Choose (for every s ∈ X) an arbitrary non-empty set of witnesses for ∃x . . .
rather than just a single witness: lax semantics as opposed to strict semantics.

For FO and dependence logic the difference is immaterial, but for some other
logics, only lax semantics guarantees the locality principle:

A ⊧X φ ⇐⇒ A ⊧X↾free(φ) φ

Erich Grädel Team Semantics, Games, and Tarski Semantics

Team semantics: inductive definition

For f.o.-literals ψ(y) ∶ A ⊧X ψ(y) ⇐⇒ A ⊧s ψ(y) for all s ∈ X

semantics of dependency atoms as defined above

A ⊧X ψ ∧ φ ∶⇐⇒ A ⊧X ψ and A ⊧X φ

A ⊧X ψ ∨ φ ∶⇐⇒ X = Y ∪ Z such that A ⊧Y ψ and A ⊧Z φ

A ⊧X ∃yψ ∶⇐⇒ ∃F ∶ X → P(A) ∖ {∅} such that A ⊧X[y↦F] ψ

A ⊧X ∀yψ ∶⇐⇒ A ⊧X[y↦A] ψ

For sentences we define: A ⊧ ψ ∶⇐⇒ A ⊧{∅} ψ

Notice that we cannot reasonably replace {∅} by ∅ since the empty team
satisfies all formulae: A ⊧∅ ψ for all ψ

Erich Grädel Team Semantics, Games, and Tarski Semantics

Team semantics: inductive definition

For f.o.-literals ψ(y) ∶ A ⊧X ψ(y) ⇐⇒ A ⊧s ψ(y) for all s ∈ X

semantics of dependency atoms as defined above

A ⊧X ψ ∧ φ ∶⇐⇒ A ⊧X ψ and A ⊧X φ

A ⊧X ψ ∨ φ ∶⇐⇒ X = Y ∪ Z such that A ⊧Y ψ and A ⊧Z φ

A ⊧X ∃yψ ∶⇐⇒ ∃F ∶ X → P(A) ∖ {∅} such that A ⊧X[y↦F] ψ

A ⊧X ∀yψ ∶⇐⇒ A ⊧X[y↦A] ψ

For sentences we define: A ⊧ ψ ∶⇐⇒ A ⊧{∅} ψ

Notice that we cannot reasonably replace {∅} by ∅ since the empty team
satisfies all formulae: A ⊧∅ ψ for all ψ

Erich Grädel Team Semantics, Games, and Tarski Semantics

Example: Defining -SAT in dependence logic
Represent an instance φ = ⋀m

i=(Yi ∨ Yi ∨ Yi) of -SAT by a team

Zφ = {(i , j, X , σ) ∶ in clause i at position j, the variable X appears with parity σ}

Example: �e formula φ = (X ∨ ¬X ∨ X) ∧ (X ∨ X ∨ ¬X), is described
by the team

clause position variable parity
 X +
 X -
 X +
 X +
 X +
 X -

Proposition. φ is satisfiable if, and only if, the team Zφ is a model of

=(clause,position) ∨ =(clause, position) ∨ =(variable,parity)

Erich Grädel Team Semantics, Games, and Tarski Semantics

Example: Defining -SAT in dependence logic
Represent an instance φ = ⋀m

i=(Yi ∨ Yi ∨ Yi) of -SAT by a team

Zφ = {(i , j, X , σ) ∶ in clause i at position j, the variable X appears with parity σ}

Example: �e formula φ = (X ∨ ¬X ∨ X) ∧ (X ∨ X ∨ ¬X), is described
by the team

clause position variable parity
 X +
 X -
 X +
 X +
 X +
 X -

Proposition. φ is satisfiable if, and only if, the team Zφ is a model of

=(clause,position) ∨ =(clause, position) ∨ =(variable,parity)

Erich Grädel Team Semantics, Games, and Tarski Semantics

From team semantics to Tarski semantics

A team of assignments s ∶ {x, . . . , xk}→ A can be viewed as a relation X ⊆ Ak .

�e translation from team semantics to Tarski semantics requires that we go to
existential second-order logic Σ.

Proposition. Every formula ψ(x, . . . , xn) in dependence or independence
logic, with vocabulary τ, can be translated into a Σ-sentence ψ∗ of vocabulary
τ ∪ {X} such that

A ⊧X ψ(x) ⇐⇒ (A, X) ⊧ ψ∗

Indeed this holds for any extension of FO by atomic properties of teams that
are first-order expressible (on the relation describing the team).

To understand the expressive power of a logic with team semantics we have to
identify the fragment of Σ to which it corresponds.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Dependence logic: translation into Σ

Construct translation ψ(x) ↦ ψ∗(X) from dependence logic into Σ such
that A ⊧X ψ(x) ⇐⇒ (A, X) ⊧ ψ∗.

Exploit downwards closure: If A ⊧X ψ and Y ⊆ X, then A ⊧Y ψ

- First-order literals α(x) are translated into ∀x(Xx → α(x))

- Dependency atoms =(xi , . . . , xik , xi) are translated into
∀x∀y(Xx ∧ Xy ∧⋀k

j=(xi j = yi j)→ (xi = yi))

- (ψ(x) ∧ φ(x))∗ ∶= ψ∗(X) ∧ φ∗(X)

- (ψ(x) ∨ φ(x))∗ ∶= ∃Y∃Z(∀x(Xx → (Yx ∨ Zx) ∧ ψ∗(Y) ∧ φ∗(Z)

- (∃yψ)∗ ∶= ∃Y(∀x∃y(Xx → Yxy) ∧ ψ∗(Y))

- (∀yψ)∗ ∶= ∃Y(∀x∀y(Xx → Yxy) ∧ ψ∗(Y)).

Erich Grädel Team Semantics, Games, and Tarski Semantics

Dependence logic: translation into Σ

Construct translation ψ(x) ↦ ψ∗(X) from dependence logic into Σ such
that A ⊧X ψ(x) ⇐⇒ (A, X) ⊧ ψ∗.

Exploit downwards closure: If A ⊧X ψ and Y ⊆ X, then A ⊧Y ψ

- First-order literals α(x) are translated into ∀x(Xx → α(x))

- Dependency atoms =(xi , . . . , xik , xi) are translated into
∀x∀y(Xx ∧ Xy ∧⋀k

j=(xi j = yi j)→ (xi = yi))

- (ψ(x) ∧ φ(x))∗ ∶= ψ∗(X) ∧ φ∗(X)

- (ψ(x) ∨ φ(x))∗ ∶= ∃Y∃Z(∀x(Xx → (Yx ∨ Zx) ∧ ψ∗(Y) ∧ φ∗(Z)

- (∃yψ)∗ ∶= ∃Y(∀x∃y(Xx → Yxy) ∧ ψ∗(Y))

- (∀yψ)∗ ∶= ∃Y(∀x∀y(Xx → Yxy) ∧ ψ∗(Y)).

Erich Grädel Team Semantics, Games, and Tarski Semantics

Expressive power of dependence logic

By downwards closure, the sentences ψ∗ have to be downwards monotone in
the team predicate:
If (A, X) ⊧ ψ∗ and Y ⊆ X then (A,Y) ⊧ ψ∗.

�us dependence logic corresponds to a strict fragment of existential
second-order logic.

�eorem (Kontinen and Väänänen)
�e expressive power of formulae ψ(x, . . . , xn) of dependence logic is
precisely that of existential second-order sentences with the predicate for the
team occurring only negatively.

While sentences of dependence logic can express all NP-properties of finite
structures, only the downwards closed NP-properties of teams are definable by
open formulae of dependence logic.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Expressive power of dependence logic

By downwards closure, the sentences ψ∗ have to be downwards monotone in
the team predicate:
If (A, X) ⊧ ψ∗ and Y ⊆ X then (A,Y) ⊧ ψ∗.

�us dependence logic corresponds to a strict fragment of existential
second-order logic.

�eorem (Kontinen and Väänänen)
�e expressive power of formulae ψ(x, . . . , xn) of dependence logic is
precisely that of existential second-order sentences with the predicate for the
team occurring only negatively.

While sentences of dependence logic can express all NP-properties of finite
structures, only the downwards closed NP-properties of teams are definable by
open formulae of dependence logic.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Expressive power of dependence logic

By downwards closure, the sentences ψ∗ have to be downwards monotone in
the team predicate:
If (A, X) ⊧ ψ∗ and Y ⊆ X then (A,Y) ⊧ ψ∗.

�us dependence logic corresponds to a strict fragment of existential
second-order logic.

�eorem (Kontinen and Väänänen)
�e expressive power of formulae ψ(x, . . . , xn) of dependence logic is
precisely that of existential second-order sentences with the predicate for the
team occurring only negatively.

While sentences of dependence logic can express all NP-properties of finite
structures, only the downwards closed NP-properties of teams are definable by
open formulae of dependence logic.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Expressive power of dependence logic

By downwards closure, the sentences ψ∗ have to be downwards monotone in
the team predicate:
If (A, X) ⊧ ψ∗ and Y ⊆ X then (A,Y) ⊧ ψ∗.

�us dependence logic corresponds to a strict fragment of existential
second-order logic.

�eorem (Kontinen and Väänänen)
�e expressive power of formulae ψ(x, . . . , xn) of dependence logic is
precisely that of existential second-order sentences with the predicate for the
team occurring only negatively.

While sentences of dependence logic can express all NP-properties of finite
structures, only the downwards closed NP-properties of teams are definable by
open formulae of dependence logic.

Erich Grädel Team Semantics, Games, and Tarski Semantics

From team semantics to Tarski semantics

Let L be any extension of FO by atomic properties of teams.
Question: Which fragment of Σ is captured by L ?

● FO (without dependencies) corresponds to the set of Σ sentences of the
form ∀x(Xx → φ(x)) where X does not occur in φ.

● Exclusion logic and dependence logic captures precisely the
Σ-sentences in which the team predicate appears only negatively.

● FO + inclusion + exclusion ≡ independence logic ≡ Σ.
�us, all NP-properties of teams are definable in independence logic.

● Inclusion logic coincides with the posGFP-fragment of LFP.
�us, on ordered finite structures, inclusion logic captures precisely the
polynomial-time properties of teams.

Goal. Explain this result using a game-theoretic approach

Erich Grädel Team Semantics, Games, and Tarski Semantics

From team semantics to Tarski semantics

Let L be any extension of FO by atomic properties of teams.
Question: Which fragment of Σ is captured by L ?

● FO (without dependencies) corresponds to the set of Σ sentences of the
form ∀x(Xx → φ(x)) where X does not occur in φ.

● Exclusion logic and dependence logic captures precisely the
Σ-sentences in which the team predicate appears only negatively.

● FO + inclusion + exclusion ≡ independence logic ≡ Σ.
�us, all NP-properties of teams are definable in independence logic.

● Inclusion logic coincides with the posGFP-fragment of LFP.
�us, on ordered finite structures, inclusion logic captures precisely the
polynomial-time properties of teams.

Goal. Explain this result using a game-theoretic approach

Erich Grädel Team Semantics, Games, and Tarski Semantics

From team semantics to Tarski semantics

Let L be any extension of FO by atomic properties of teams.
Question: Which fragment of Σ is captured by L ?

● FO (without dependencies) corresponds to the set of Σ sentences of the
form ∀x(Xx → φ(x)) where X does not occur in φ.

● Exclusion logic and dependence logic captures precisely the
Σ-sentences in which the team predicate appears only negatively.

● FO + inclusion + exclusion ≡ independence logic ≡ Σ.
�us, all NP-properties of teams are definable in independence logic.

● Inclusion logic coincides with the posGFP-fragment of LFP.
�us, on ordered finite structures, inclusion logic captures precisely the
polynomial-time properties of teams.

Goal. Explain this result using a game-theoretic approach

Erich Grädel Team Semantics, Games, and Tarski Semantics

From team semantics to Tarski semantics

Let L be any extension of FO by atomic properties of teams.
Question: Which fragment of Σ is captured by L ?

● FO (without dependencies) corresponds to the set of Σ sentences of the
form ∀x(Xx → φ(x)) where X does not occur in φ.

● Exclusion logic and dependence logic captures precisely the
Σ-sentences in which the team predicate appears only negatively.

● FO + inclusion + exclusion ≡ independence logic ≡ Σ.
�us, all NP-properties of teams are definable in independence logic.

● Inclusion logic coincides with the posGFP-fragment of LFP.
�us, on ordered finite structures, inclusion logic captures precisely the
polynomial-time properties of teams.

Goal. Explain this result using a game-theoretic approach

Erich Grädel Team Semantics, Games, and Tarski Semantics

From team semantics to Tarski semantics

Let L be any extension of FO by atomic properties of teams.
Question: Which fragment of Σ is captured by L ?

● FO (without dependencies) corresponds to the set of Σ sentences of the
form ∀x(Xx → φ(x)) where X does not occur in φ.

● Exclusion logic and dependence logic captures precisely the
Σ-sentences in which the team predicate appears only negatively.

● FO + inclusion + exclusion ≡ independence logic ≡ Σ.
�us, all NP-properties of teams are definable in independence logic.

● Inclusion logic coincides with the posGFP-fragment of LFP.
�us, on ordered finite structures, inclusion logic captures precisely the
polynomial-time properties of teams.

Goal. Explain this result using a game-theoretic approach

Erich Grädel Team Semantics, Games, and Tarski Semantics

Model-Checking Games

�e model checking problem for a logic L (with classical Tarski-semantics)

Given: structure A
formula ψ(x) ∈ L
assignment s ∶ free(ψ)→ A

Question: A ⊧s ψ ?

Reduce model checking problem A ⊧s ψ to strategy problem for model
checking game G(A,ψ, s), played by
– Falsifier (also called Player), and
– Verifier (also called Player), such that

A ⊧s ψ ⇐⇒ Verifier has winning strategy for G(A,ψ, s)

Ô⇒ Model checking via construction of winning strategies

Erich Grädel Team Semantics, Games, and Tarski Semantics

Model-Checking Games

�e model checking problem for a logic L (with classical Tarski-semantics)

Given: structure A
formula ψ(x) ∈ L
assignment s ∶ free(ψ)→ A

Question: A ⊧s ψ ?

Reduce model checking problem A ⊧s ψ to strategy problem for model
checking game G(A,ψ, s), played by
– Falsifier (also called Player), and
– Verifier (also called Player), such that

A ⊧s ψ ⇐⇒ Verifier has winning strategy for G(A,ψ, s)

Ô⇒ Model checking via construction of winning strategies

Erich Grädel Team Semantics, Games, and Tarski Semantics

Model-Checking Games

�e model checking problem for a logic L (with classical Tarski-semantics)

Given: structure A
formula ψ(x) ∈ L
assignment s ∶ free(ψ)→ A

Question: A ⊧s ψ ?

Reduce model checking problem A ⊧s ψ to strategy problem for model
checking game G(A,ψ, s), played by
– Falsifier (also called Player), and
– Verifier (also called Player), such that

A ⊧s ψ ⇐⇒ Verifier has winning strategy for G(A,ψ, s)

Ô⇒ Model checking via construction of winning strategies

Erich Grädel Team Semantics, Games, and Tarski Semantics

Model-checking game for first-order logic

�e game G(A,ψ, t) for a structure A and ψ(x) ∈ FO.

Positions: (φ, s) φ is a subformula of ψ and s ∶ free(φ)→ A

Verifier moves:
(φ ∨ φ, s)→ (φi , s ↾ free(φi)) (i = ,)
(∃xφ, s)→ (φ, s[x ↦ a]) (a ∈ A)

Falsifier moves
(φ ∧ φ, s)→ (φi , s ↾ free(φi)) (i = ,)
(∀xφ, s)→ (φ, s[x ↦ a]) (a ∈ A)

Terminal positions: φ atomic / negated atomic

Verifier
Falsifier

wins at (φ, s) ⇐⇒ A
⊧s
/⊧s

φ

Erich Grädel Team Semantics, Games, and Tarski Semantics

From reachability games to second-order reachability games

Games for FO are reachability games, played on trees (or acyclic graphs)
Every terminal position is either winning or losing.

A winning strategy S from initial position v has to make sure that every play
from v that is consistent with S reaches a winning terminal position.

For games with team semantics we need second-order reachability games,
played on forests of game trees.
Now, every set of terminal positions is either winning or losing.

A winning strategy S from a set X of initial positions must make sure that the
set of all terminal positions that are reachable from X by a play that is
consistent with S is a winning set.

It is important to admit nondeterministic strategies. In second-order
reachability games these are more powerful than deterministic ones.

Erich Grädel Team Semantics, Games, and Tarski Semantics

From reachability games to second-order reachability games

Games for FO are reachability games, played on trees (or acyclic graphs)
Every terminal position is either winning or losing.

A winning strategy S from initial position v has to make sure that every play
from v that is consistent with S reaches a winning terminal position.

For games with team semantics we need second-order reachability games,
played on forests of game trees.
Now, every set of terminal positions is either winning or losing.

A winning strategy S from a set X of initial positions must make sure that the
set of all terminal positions that are reachable from X by a play that is
consistent with S is a winning set.

It is important to admit nondeterministic strategies. In second-order
reachability games these are more powerful than deterministic ones.

Erich Grädel Team Semantics, Games, and Tarski Semantics

From reachability games to second-order reachability games

Games for FO are reachability games, played on trees (or acyclic graphs)
Every terminal position is either winning or losing.

A winning strategy S from initial position v has to make sure that every play
from v that is consistent with S reaches a winning terminal position.

For games with team semantics we need second-order reachability games,
played on forests of game trees.
Now, every set of terminal positions is either winning or losing.

A winning strategy S from a set X of initial positions must make sure that the
set of all terminal positions that are reachable from X by a play that is
consistent with S is a winning set.

It is important to admit nondeterministic strategies. In second-order
reachability games these are more powerful than deterministic ones.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Model-checking game for logics with team semantics

General construction, for formulae ψ(x) with any kind of dependency atoms.

A game graph G(A,ψ) is a forest of game trees whose roots are initial
positions (ψ, s) for s ∶ free(ψ)→ A.�e game trees are defined as for FO.

�e winning condition is a second-order reachability condition: Terminal
positions are (α, s) where α is a dependence atom or a first-order literal.
To be winning, a strategy S must guarantees that for every such α,

A ⊧Team(S ,α) α
where Team(S , α) ∶= {s ∶ the strategy S admits the position (α, s)}.

�eorem. A ⊧X ψ if, and only if, Verifier has a winning strategy in G(A,ψ)
from the set {(ψ, s) ∶ s ∈ X} of initial positions defined by X.

Notice that the winning condition refers to the entire set of terminal positions
that are reachable by plays that are consistent with the strategy.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Model-checking game for logics with team semantics

General construction, for formulae ψ(x) with any kind of dependency atoms.

A game graph G(A,ψ) is a forest of game trees whose roots are initial
positions (ψ, s) for s ∶ free(ψ)→ A.�e game trees are defined as for FO.

�e winning condition is a second-order reachability condition: Terminal
positions are (α, s) where α is a dependence atom or a first-order literal.
To be winning, a strategy S must guarantees that for every such α,

A ⊧Team(S ,α) α
where Team(S , α) ∶= {s ∶ the strategy S admits the position (α, s)}.

�eorem. A ⊧X ψ if, and only if, Verifier has a winning strategy in G(A,ψ)
from the set {(ψ, s) ∶ s ∈ X} of initial positions defined by X.

Notice that the winning condition refers to the entire set of terminal positions
that are reachable by plays that are consistent with the strategy.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Model-checking game for logics with team semantics

General construction, for formulae ψ(x) with any kind of dependency atoms.

A game graph G(A,ψ) is a forest of game trees whose roots are initial
positions (ψ, s) for s ∶ free(ψ)→ A.�e game trees are defined as for FO.

�e winning condition is a second-order reachability condition: Terminal
positions are (α, s) where α is a dependence atom or a first-order literal.
To be winning, a strategy S must guarantees that for every such α,

A ⊧Team(S ,α) α
where Team(S , α) ∶= {s ∶ the strategy S admits the position (α, s)}.

�eorem. A ⊧X ψ if, and only if, Verifier has a winning strategy in G(A,ψ)
from the set {(ψ, s) ∶ s ∈ X} of initial positions defined by X.

Notice that the winning condition refers to the entire set of terminal positions
that are reachable by plays that are consistent with the strategy.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Model-checking game for logics with team semantics

General construction, for formulae ψ(x) with any kind of dependency atoms.

A game graph G(A,ψ) is a forest of game trees whose roots are initial
positions (ψ, s) for s ∶ free(ψ)→ A.�e game trees are defined as for FO.

�e winning condition is a second-order reachability condition: Terminal
positions are (α, s) where α is a dependence atom or a first-order literal.
To be winning, a strategy S must guarantees that for every such α,

A ⊧Team(S ,α) α
where Team(S , α) ∶= {s ∶ the strategy S admits the position (α, s)}.

�eorem. A ⊧X ψ if, and only if, Verifier has a winning strategy in G(A,ψ)
from the set {(ψ, s) ∶ s ∈ X} of initial positions defined by X.

Notice that the winning condition refers to the entire set of terminal positions
that are reachable by plays that are consistent with the strategy.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Complexity

�eorem. While classical reachability games can be solved in linear time, the
problem whether a given second-order reachability game admits a winning
strategy for Player , is NP-complete.

�e size of a model checking game G(A,ψ) on a finite structure A is bounded
by ∣ψ∣ ⋅ ∣A∣width(ψ), where width(ψ) ∶= max{∣free(φ)∣ ∶ φ subformula of ψ}.

�eorem. Let L be any extension of first-order logic by atomic formulae on
teams that can be evaluated in polynomial time.�en the model-checking
problem for L on finite structures is in N. For formulae of bounded
width, the model-checking problem is in NP.

�e problem is in fact N-complete for most logics with team
semantics, even in the case where A is just the set {, } and X = {∅}.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Complexity

�eorem. While classical reachability games can be solved in linear time, the
problem whether a given second-order reachability game admits a winning
strategy for Player , is NP-complete.

�e size of a model checking game G(A,ψ) on a finite structure A is bounded
by ∣ψ∣ ⋅ ∣A∣width(ψ), where width(ψ) ∶= max{∣free(φ)∣ ∶ φ subformula of ψ}.

�eorem. Let L be any extension of first-order logic by atomic formulae on
teams that can be evaluated in polynomial time.�en the model-checking
problem for L on finite structures is in N. For formulae of bounded
width, the model-checking problem is in NP.

�e problem is in fact N-complete for most logics with team
semantics, even in the case where A is just the set {, } and X = {∅}.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Complexity

�eorem. While classical reachability games can be solved in linear time, the
problem whether a given second-order reachability game admits a winning
strategy for Player , is NP-complete.

�e size of a model checking game G(A,ψ) on a finite structure A is bounded
by ∣ψ∣ ⋅ ∣A∣width(ψ), where width(ψ) ∶= max{∣free(φ)∣ ∶ φ subformula of ψ}.

�eorem. Let L be any extension of first-order logic by atomic formulae on
teams that can be evaluated in polynomial time.�en the model-checking
problem for L on finite structures is in N. For formulae of bounded
width, the model-checking problem is in NP.

�e problem is in fact N-complete for most logics with team
semantics, even in the case where A is just the set {, } and X = {∅}.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Inclusion logic

Inclusion logic: FO + inclusion atoms x ⊆ y.

Recall that A ⊧X x ⊆ y if for all s ∈ X there exists a t ∈ X with t(y) = s(x).

Inclusion logic is an interesting variant of a dependence logic, with somewhat
unusual properties.

Contrary to dependence logic, it is not closed under subteams, but it is closed
under unions of teams: If A ⊧X ψ and A ⊧Y ψ then also A ⊧X∪Y ψ

Hence, in terms of expressive power, inclusion logic is incomparable to
dependence logic and exclusion logic.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Example: Infinite descending chains

(A, <) ⊧ ∃x∃y(y < x ∧ y ⊆ x) ⇐⇒ (A, <) is not well-founded

A (nondeterministic) strategy S for this sentence just amounts to a selection of
a team X of assignments s ∶ (x , y)↦ (a, b).

All atoms are reachable by the opponent. Hence Team(S , y < x) =
Team(S , y ⊆ x) = X.�us, S is winning if:

(A, <) ⊧X (y < x): For all s ∶ (x , y)↦ (a, b) in X, we have that b < a

(A, <) ⊧X (y ⊆ x): For all s ∶ (x , y)↦ (a, b) in X, we have another
assignment t ∶ (x , y)↦ (b, c) in X.

Hence we have a winning strategy in the model-checking game if, and only if,
(A, <) has an infinite descending chain.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Example: Infinite descending chains

(A, <) ⊧ ∃x∃y(y < x ∧ y ⊆ x) ⇐⇒ (A, <) is not well-founded

A (nondeterministic) strategy S for this sentence just amounts to a selection of
a team X of assignments s ∶ (x , y)↦ (a, b).

All atoms are reachable by the opponent. Hence Team(S , y < x) =
Team(S , y ⊆ x) = X.�us, S is winning if:

(A, <) ⊧X (y < x): For all s ∶ (x , y)↦ (a, b) in X, we have that b < a

(A, <) ⊧X (y ⊆ x): For all s ∶ (x , y)↦ (a, b) in X, we have another
assignment t ∶ (x , y)↦ (b, c) in X.

Hence we have a winning strategy in the model-checking game if, and only if,
(A, <) has an infinite descending chain.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Example: Infinite descending chains

(A, <) ⊧ ∃x∃y(y < x ∧ y ⊆ x) ⇐⇒ (A, <) is not well-founded

A (nondeterministic) strategy S for this sentence just amounts to a selection of
a team X of assignments s ∶ (x , y)↦ (a, b).

All atoms are reachable by the opponent. Hence Team(S , y < x) =
Team(S , y ⊆ x) = X.�us, S is winning if:

(A, <) ⊧X (y < x): For all s ∶ (x , y)↦ (a, b) in X, we have that b < a

(A, <) ⊧X (y ⊆ x): For all s ∶ (x , y)↦ (a, b) in X, we have another
assignment t ∶ (x , y)↦ (b, c) in X.

Hence we have a winning strategy in the model-checking game if, and only if,
(A, <) has an infinite descending chain.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Example: Infinite descending chains

(A, <) ⊧ ∃x∃y(y < x ∧ y ⊆ x) ⇐⇒ (A, <) is not well-founded

A (nondeterministic) strategy S for this sentence just amounts to a selection of
a team X of assignments s ∶ (x , y)↦ (a, b).

All atoms are reachable by the opponent. Hence Team(S , y < x) =
Team(S , y ⊆ x) = X.�us, S is winning if:

(A, <) ⊧X (y < x): For all s ∶ (x , y)↦ (a, b) in X, we have that b < a

(A, <) ⊧X (y ⊆ x): For all s ∶ (x , y)↦ (a, b) in X, we have another
assignment t ∶ (x , y)↦ (b, c) in X.

Hence we have a winning strategy in the model-checking game if, and only if,
(A, <) has an infinite descending chain.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Example: Infinite descending chains

(A, <) ⊧ ∃x∃y(y < x ∧ y ⊆ x) ⇐⇒ (A, <) is not well-founded

A (nondeterministic) strategy S for this sentence just amounts to a selection of
a team X of assignments s ∶ (x , y)↦ (a, b).

All atoms are reachable by the opponent. Hence Team(S , y < x) =
Team(S , y ⊆ x) = X.�us, S is winning if:

(A, <) ⊧X (y < x): For all s ∶ (x , y)↦ (a, b) in X, we have that b < a

(A, <) ⊧X (y ⊆ x): For all s ∶ (x , y)↦ (a, b) in X, we have another
assignment t ∶ (x , y)↦ (b, c) in X.

Hence we have a winning strategy in the model-checking game if, and only if,
(A, <) has an infinite descending chain.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Example: Infinite descending chains

(A, <) ⊧ ∃x∃y(y < x ∧ y ⊆ x) ⇐⇒ (A, <) is not well-founded

A (nondeterministic) strategy S for this sentence just amounts to a selection of
a team X of assignments s ∶ (x , y)↦ (a, b).

All atoms are reachable by the opponent. Hence Team(S , y < x) =
Team(S , y ⊆ x) = X.�us, S is winning if:

(A, <) ⊧X (y < x): For all s ∶ (x , y)↦ (a, b) in X, we have that b < a

(A, <) ⊧X (y ⊆ x): For all s ∶ (x , y)↦ (a, b) in X, we have another
assignment t ∶ (x , y)↦ (b, c) in X.

Hence we have a winning strategy in the model-checking game if, and only if,
(A, <) has an infinite descending chain.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Safety games for inclusion logic

Safety games are games that may admit infinite plays, and where Verifier has to
avoid a given set of losing terminal positions but wins all infinite plays.

�e second-order reachability game G(A,ψ) for a formula ψ ∈ FO(⊆) can be
modified to a safety game Gsafe(A,ψ) as follows:

From positions (x ⊆ y, s), Verifier can move to any position (x ⊆ y, t) such
that t(y) = s(x). From there, Falsifier can make an arbitrary move upwards in
the game forest.

From a given set X ⊆ I of initial positions, Verifier must make sure to avoid
- terminal positions (φ, s), where φ is a first-order literal with A /⊧s φ, and
- initial positions outside X

Proposition. Every winning strategy S = (W , F) from X for G(A,ψ) is also a
winning strategy for Gsafe(A,ψ) that avoids I ∖ X, and vice versa.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Safety games for inclusion logic

Safety games are games that may admit infinite plays, and where Verifier has to
avoid a given set of losing terminal positions but wins all infinite plays.

�e second-order reachability game G(A,ψ) for a formula ψ ∈ FO(⊆) can be
modified to a safety game Gsafe(A,ψ) as follows:

From positions (x ⊆ y, s), Verifier can move to any position (x ⊆ y, t) such
that t(y) = s(x). From there, Falsifier can make an arbitrary move upwards in
the game forest.

From a given set X ⊆ I of initial positions, Verifier must make sure to avoid
- terminal positions (φ, s), where φ is a first-order literal with A /⊧s φ, and
- initial positions outside X

Proposition. Every winning strategy S = (W , F) from X for G(A,ψ) is also a
winning strategy for Gsafe(A,ψ) that avoids I ∖ X, and vice versa.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Safety games for inclusion logic

Safety games are games that may admit infinite plays, and where Verifier has to
avoid a given set of losing terminal positions but wins all infinite plays.

�e second-order reachability game G(A,ψ) for a formula ψ ∈ FO(⊆) can be
modified to a safety game Gsafe(A,ψ) as follows:

From positions (x ⊆ y, s), Verifier can move to any position (x ⊆ y, t) such
that t(y) = s(x). From there, Falsifier can make an arbitrary move upwards in
the game forest.

From a given set X ⊆ I of initial positions, Verifier must make sure to avoid
- terminal positions (φ, s), where φ is a first-order literal with A /⊧s φ, and
- initial positions outside X

Proposition. Every winning strategy S = (W , F) from X for G(A,ψ) is also a
winning strategy for Gsafe(A,ψ) that avoids I ∖ X, and vice versa.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Inclusion logic and greatest fixed points

Existence of an infinite descending chain is not first-order definable, and not
even in L∞ω. However, there is a simple definition by a greatest fixed point:

(A, <) is not well-founded ⇐⇒ (A, <) ⊧ ∃x[gfpCx . ∃y(y < x ∧ Cy)](x)

Given a team X, the maximal subteam Xmax ⊆ X satisfying an inclusion
statement xi ⊆ x j is also definable as a greatest fixed point:

x ∈ Xmax ⇐⇒ (A, X) ⊧ [gfpYx . Xx ∧ ∃y(Y y ∧ y j = xi)](x)

Further A ⊧X (xi ⊆ x j) if, and only if (A, X) ⊧ ∀x(Xz → [gfpYx](x)).

Claim. �is generalizes from basic inclusion atoms to all formulae of
inclusion logic.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Inclusion logic and greatest fixed points

Existence of an infinite descending chain is not first-order definable, and not
even in L∞ω. However, there is a simple definition by a greatest fixed point:

(A, <) is not well-founded ⇐⇒ (A, <) ⊧ ∃x[gfpCx . ∃y(y < x ∧ Cy)](x)

Given a team X, the maximal subteam Xmax ⊆ X satisfying an inclusion
statement xi ⊆ x j is also definable as a greatest fixed point:

x ∈ Xmax ⇐⇒ (A, X) ⊧ [gfpYx . Xx ∧ ∃y(Y y ∧ y j = xi)](x)

Further A ⊧X (xi ⊆ x j) if, and only if (A, X) ⊧ ∀x(Xz → [gfpYx](x)).

Claim. �is generalizes from basic inclusion atoms to all formulae of
inclusion logic.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Inclusion logic and greatest fixed points

Existence of an infinite descending chain is not first-order definable, and not
even in L∞ω. However, there is a simple definition by a greatest fixed point:

(A, <) is not well-founded ⇐⇒ (A, <) ⊧ ∃x[gfpCx . ∃y(y < x ∧ Cy)](x)

Given a team X, the maximal subteam Xmax ⊆ X satisfying an inclusion
statement xi ⊆ x j is also definable as a greatest fixed point:

x ∈ Xmax ⇐⇒ (A, X) ⊧ [gfpYx . Xx ∧ ∃y(Y y ∧ y j = xi)](x)

Further A ⊧X (xi ⊆ x j) if, and only if (A, X) ⊧ ∀x(Xz → [gfpYx](x)).

Claim. �is generalizes from basic inclusion atoms to all formulae of
inclusion logic.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Least fixed-point logic and its posGFP-fragment

LFP extends first-order logic by least and greatest fixed points of monotone
definable operators. It is a logic of great importance in finite model theory.

�eorem (Immerman, Vardi)
On ordered finite structures, LFP captures P.

posGFP is the fragment of LFP that makes use of greatest fixed points only
(which may appear only positively).

posGFP is at the bottom level of the alternation hierarchy of LFP. In general,
and for instance on (N,+, ⋅), this hierarchy is strict.

While, in general LFP ⊆ ∆ ∖ Σ, we have that posGFP ⊆ Σ.

�eorem (Immerman) On finite structures, LFP ≡ posGFP ⊆ ∆.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Least fixed-point logic and its posGFP-fragment

LFP extends first-order logic by least and greatest fixed points of monotone
definable operators. It is a logic of great importance in finite model theory.

�eorem (Immerman, Vardi)
On ordered finite structures, LFP captures P.

posGFP is the fragment of LFP that makes use of greatest fixed points only
(which may appear only positively).

posGFP is at the bottom level of the alternation hierarchy of LFP. In general,
and for instance on (N,+, ⋅), this hierarchy is strict.

While, in general LFP ⊆ ∆ ∖ Σ, we have that posGFP ⊆ Σ.

�eorem (Immerman) On finite structures, LFP ≡ posGFP ⊆ ∆.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Least fixed-point logic and its posGFP-fragment

LFP extends first-order logic by least and greatest fixed points of monotone
definable operators. It is a logic of great importance in finite model theory.

�eorem (Immerman, Vardi)
On ordered finite structures, LFP captures P.

posGFP is the fragment of LFP that makes use of greatest fixed points only
(which may appear only positively).

posGFP is at the bottom level of the alternation hierarchy of LFP. In general,
and for instance on (N,+, ⋅), this hierarchy is strict.

While, in general LFP ⊆ ∆ ∖ Σ, we have that posGFP ⊆ Σ.

�eorem (Immerman) On finite structures, LFP ≡ posGFP ⊆ ∆.

Erich Grädel Team Semantics, Games, and Tarski Semantics

posGFP and safety games

�e model checking games for general LFP-formulae are parity games, which
are not known to solvable in polynomial time.

However, the model-checking games for posGFP are safety games.

How can we use the fact, that posGFP and FO(⊆) have the same kind of
model-checking games, to provide translations between the two logics ?

For this we need two further facts on model-checking games:

Interpretability: For every formula ψ (in any of the two logics) there exists a
first-order interpretation Iψ that interprets G(A,ψ) in A (for every A).

Winning is definable: In both logics there exist formulae win(x) defining, on
every safety game G, the set of positions from which Verifier wins.

Erich Grädel Team Semantics, Games, and Tarski Semantics

posGFP and safety games

�e model checking games for general LFP-formulae are parity games, which
are not known to solvable in polynomial time.

However, the model-checking games for posGFP are safety games.

How can we use the fact, that posGFP and FO(⊆) have the same kind of
model-checking games, to provide translations between the two logics ?

For this we need two further facts on model-checking games:

Interpretability: For every formula ψ (in any of the two logics) there exists a
first-order interpretation Iψ that interprets G(A,ψ) in A (for every A).

Winning is definable: In both logics there exist formulae win(x) defining, on
every safety game G, the set of positions from which Verifier wins.

Erich Grädel Team Semantics, Games, and Tarski Semantics

posGFP and safety games

�e model checking games for general LFP-formulae are parity games, which
are not known to solvable in polynomial time.

However, the model-checking games for posGFP are safety games.

How can we use the fact, that posGFP and FO(⊆) have the same kind of
model-checking games, to provide translations between the two logics ?

For this we need two further facts on model-checking games:

Interpretability: For every formula ψ (in any of the two logics) there exists a
first-order interpretation Iψ that interprets G(A,ψ) in A (for every A).

Winning is definable: In both logics there exist formulae win(x) defining, on
every safety game G, the set of positions from which Verifier wins.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Game-based translations between FO(⊆) and posGFP

Given a formula ψ(x) ∈ FO(⊆) take the first-order interpretation Iψ that
interprets the safety game Gsafe(A,ψ) in A.�at is: Iψ ∶ (A, X)↦ Gsafe(A,ψ).

But this also means that every formula φ on Gsafe(A,ψ) translates into a
formula Iψ(φ) that expresses in (A, X) what φ does in Gsafe(A,ψ).

Apply this to win(y) ∈ posGFP which defines the winning positions in safety
games. Iψ translates win(y) into another posGFP-formula win∗(y) expressing
in (A, X) the relevant winning condition of the model-checking game.

Combining this with the definability of the input positions associated with X,
we obtain a posGFP-formula φ(x) that is equivalent to ψ(x), in the sense that

A ⊧X ψ ⇐⇒ (A, X) ⊧s φ(x) for all s ∈ X

An analogous argument works for the translation of posGFP into Inc.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Game-based translations between FO(⊆) and posGFP

Given a formula ψ(x) ∈ FO(⊆) take the first-order interpretation Iψ that
interprets the safety game Gsafe(A,ψ) in A.�at is: Iψ ∶ (A, X)↦ Gsafe(A,ψ).

But this also means that every formula φ on Gsafe(A,ψ) translates into a
formula Iψ(φ) that expresses in (A, X) what φ does in Gsafe(A,ψ).

Apply this to win(y) ∈ posGFP which defines the winning positions in safety
games. Iψ translates win(y) into another posGFP-formula win∗(y) expressing
in (A, X) the relevant winning condition of the model-checking game.

Combining this with the definability of the input positions associated with X,
we obtain a posGFP-formula φ(x) that is equivalent to ψ(x), in the sense that

A ⊧X ψ ⇐⇒ (A, X) ⊧s φ(x) for all s ∈ X

An analogous argument works for the translation of posGFP into Inc.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Game-based translations between FO(⊆) and posGFP

Given a formula ψ(x) ∈ FO(⊆) take the first-order interpretation Iψ that
interprets the safety game Gsafe(A,ψ) in A.�at is: Iψ ∶ (A, X)↦ Gsafe(A,ψ).

But this also means that every formula φ on Gsafe(A,ψ) translates into a
formula Iψ(φ) that expresses in (A, X) what φ does in Gsafe(A,ψ).

Apply this to win(y) ∈ posGFP which defines the winning positions in safety
games. Iψ translates win(y) into another posGFP-formula win∗(y) expressing
in (A, X) the relevant winning condition of the model-checking game.

Combining this with the definability of the input positions associated with X,
we obtain a posGFP-formula φ(x) that is equivalent to ψ(x), in the sense that

A ⊧X ψ ⇐⇒ (A, X) ⊧s φ(x) for all s ∈ X

An analogous argument works for the translation of posGFP into Inc.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Inclusion logic and least fixed-point logic

�eorem. (Galliani and Hella) For every formula φ(z) ∈ FO(⊆) one can
construct a formula ψ(X , z) in posGFP, and vice versa, such that, for all A and
all X

A ⊧X φ ⇐⇒ (A, X) ⊧ ∀z(Xz → ψ(X , z))
�us the maximal team satisfying φ coincides with gfp(ψ).

For the case of sentences, ψ and φ are equivalent.

Corollary. For sentences, inclusion logic and posGFP have the same
expressive power.

Corollary. On finite structures, inclusion logic and LFP have the same
expressive power. In particular, on ordered finite structures, inclusion logic
captures P.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Further work

On finite structures, the equivalence between positive greatest fixed point
logic, safety games and inclusion logic li�s to an equivalence between
corresponding counting extensions:

�eorem. (Grädel, Hegselmann)
Inclusion logic with counting corresponds to threshold safety games and to
fixed-point logic with counting.

�us, inclusion logic with counting comes rather close to capturing P.

Erich Grädel Team Semantics, Games, and Tarski Semantics

Summary

�ere is a rich collection of logics of dependence and independence, on the
basis of different atomic dependency properties

All these logics are based on team semantics

In terms of expressive power, logics of dependence and independence are
equivalent to existential second-order logic or natural fragments of it.

�e model-checking games for logics with team semantics are second-order
reachability games.�ese game provide evaluation procedures and complexity
results for these logics.

For inclusion logic the games can be simplified to classical safety games.

Inclusion logic is equivalent to the posGFP fragment of fixed-point logic.
�is generalizes to counting extensions.

Erich Grädel Team Semantics, Games, and Tarski Semantics

