Residue Field Domination

Clifton Ealy

Department of Mathematics, Western Illinois University

February 10th, 2017

◆□ > < 個 > < E > < E > E 9 < 0</p>

Introduction to Valued Fields

- Consider $\mathbb{R}(t)$, the field of rational functions with real coefficients.
- There is no $\sqrt{-1}$ so this field can be ordered. One way to do this is to say p(t) < q(t) if for all sufficiently large $r \in \mathbb{R}$, p(r) < q(r).
- Say p(t) ≡ q(t) if p(t) = O(q(t)) and q(t) = O(p(t)). Then R(t)*/≡ is an ordered abelian group, usually called Γ and written additively.
- The quotient map $v : R(t)^* \to \Gamma$ is called a *valuation*.
- The collection of all p(t) in R(t) such that p(t) = O(1) is a convex ring. This is called the *valuation ring*, which we will denote V.
- The collection of all m ∈ V such that 1/m ∉ V forms a maximal ideal, m of V. We call these elements infinitessimals.
- The map $\pi: V \to V/\mathfrak{m}$ is called the *standard part map*.

Valued Fields in Model Theory

- We will consider fields that are better behaved than $\mathbb{R}(t)$.
- Let *R* be the the real closure of $\mathbb{R}(t)$
 - that is, close $\mathbb{R}(t)$ under square roots of positive elements, and insure that polynomials of odd degree have at least one root.
- We add Γ as a sort, as well as $v : R^* \to \Gamma$.
- We add $k = V/\mathfrak{m}$ as a sort as well as $\pi: V \to k$.
- This is a *real closed valued field* and we refer to its theory as RCVF.
- If you form a field extension by adjoining a root of -1, you have an *algebraically closed valued field* and we refer to its theory as ACVF.

Some background

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Haskell, Hrushovski, and Macpherson isolated a phenomena in models of algebraically closed valued fields they called stable domination.
 - A formula, φ(x, y), is stable if it does not have the order property.
 - i.e. there is no $(a_i b_i)_{i < \omega}$ such that $\varphi(a_i, b_j)$ iff i < j.
 - Thus valued fields are not stable due to the value group.
 - However, if *L* and *M* satisfy ACVF and each contain a maximal algebraically closed *C* with k(L) algebraically independent from k(M) over k(C) and with $\Gamma(L) \cap \Gamma(M) = \Gamma(C)$ then $\operatorname{tp}(L/Ck(L)\Gamma(L))$ implies $\operatorname{tp}(L/M)$.
 - This (roughly) is the property called stable domination.
 - Why "However"? We need a brief detour into stability and independence relations.

What Is An Independence Relation?

- An independence relation, written A ⊥^I_C B, should capture the idea that B and C together contain no additional interesting information about A than C does alone.
- An example: Let 𝔐 be a ℚ-vector space, and let V be a definable subspace of 𝔐².
 - For instance, let $\mathfrak{M} := (\mathbb{R}, +, \{q \cdot\}_{q \in \mathbb{Q}})$, and let V be the line $q_1 x + q_2 y = 0$.
- Consider two elements of \mathbb{R}^2 , *a* and *b*, in the same coset of *V*. Intuitively, *b* should tell you more about *a* then you could say without parameters.
 - with the parameter b, one can say "x b is in V". This statement is true of a, and if b_2, b_3, \ldots are in different cosets of V, then the formulas " $x b_i$ is in V" define pairwise disjoint sets.
 - This is an example of "forking" and one writes $a \not\perp b$.

A Second Example

- Let \mathfrak{M} be $(\mathbb{C},+,\cdot)$
- Consider a tuple, a, contained in C³ not in any algebraic surface defined over Q^{alg}.
 - if there is a surface, defined over *B*, containing *a* then it seems reasonable to say that *b* has more information about *a* than is available over the empty set, and one would write $a \swarrow^{1} B$
 - Assume there is no curve containing a defined over B. If there is a curve containing a defined over C ⊇ B, then a L¹_B C
- i.e. define $A \swarrow_B^{I} C$ to mean there is a tuple of elements of A which is contained over C in a variety of lower dimension than over B.
- It turns out that this is not a different independence relation. This is another example of "forking", and so we write $A \not\perp_B C$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 Let *L* := {*E*(*x*, *y*)}. Let *T* say that *E* is an equivalence relation with infinitely many equivalence classes, each of which is infinite.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 Let L := {E(x, y)}. Let T say that E is an equivalence relation with infinitely many equivalence classes, each of which is infinite.

うして ふゆう ふほう ふほう うらつ

- Let L := {E(x, y)}. Let T say that E is an equivalence relation with infinitely many equivalence classes, each of which is infinite.
- Note that *xEb*₁ defines a set which includes *a*, and the formulas *xEb*₁, *xEb*₂, *xEb*₃, ... define disjoint sets.

- Let L := {E(x, y)}. Let T say that E is an equivalence relation with infinitely many equivalence classes, each of which is infinite.
- Note that *xEb*₁ defines a set which includes *a*, and the formulas *xEb*₁, *xEb*₂, *xEb*₃, ... define disjoint sets.

• $E(x, b_1)$ divides over the empty set, and $tp(a/b_1)$ forks over the empty set.

Forking

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Definition

A formula $\varphi(x, b)$ divides over C if there is $(b_i)_{i \in \mathbb{N}}$ such that $\{\varphi(x, b_i) | i \in \mathbb{N}\}$ is k-inconsistent, and each $b_i \in \operatorname{tp}(b/C)$.

Definition

A type *forks* over C if it implies a disjunction of formulas which divide over C.

- Each example of an independence relation so far has been non-forking.
- Non forking is written $a \bigsqcup_{h} c$

Unique non-forking extensions

- Non-forking is best behaved in theories that are stable (i.e. no formula has the order property).
- Here one has, among other things, the fact that if $a \, {\color{black}{oxedsymbol{}_{C}}} B$ and C is a model (or just algebraically closed in M^{eq}) then $\operatorname{tp}(a/C)$ implies $\operatorname{tp}(a/BC)$.
- Hence the "however" from many slides ago:
 - However, if L and M satisfy ACVF and each contain a maximal algebraically closed subfield C with k(L) algebraically independent from k(M) over k(C) and with $\Gamma(L) \cap \Gamma(M) = \Gamma(C)$ then $\operatorname{tp}(L/Ck(L)\Gamma(L))$ implies $\operatorname{tp}(L/M)$.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let \$\mathcal{L}\$:= {<}. Let \$T\$ be the theory of dense linear orders.
(Q,<)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Let \$\mathcal{L}\$:= {<}. Let \$T\$ be the theory of dense linear orders.
(Q,<)

Let \$\mathcal{L}\$:= {<}. Let \$T\$ be the theory of dense linear orders.
(Q,<)

Let L := {<}. Let T be the theory of dense linear orders.
(Q,<)

Let L := {<}. Let T be the theory of dense linear orders.
(Q,<)

Let L := {<}. Let T be the theory of dense linear orders.
(Q,<)

So $a_0 < x < b_0$ divides over the empty set

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Let L := {<}. Let T be the theory of dense linear orders.
(Q,<)

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Let L := {<}. Let T be the theory of dense linear orders.
(Q,<)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Let L := {<}. Let T be the theory of dense linear orders.
(Q,<)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Let L := {<}. Let T be the theory of dense linear orders.
(Q,<)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

So $c_0 < x < d_0$ divides over $\{a_0, b_0\}$.

Let L := {<}. Let T be the theory of dense linear orders.
(Q, <)

So $c_0 < x < d_0$ divides over $\{a_0, b_0\}$. There is no end to the "information" that you can have about an element. So forking is not an independence relation.

þ-Forking

- There is a generalization of stability (and of simplicity), called *rosiness* that is not ruined by the existence of an order.
- We want a definition similar to forking but that is well-behaved in a larger variety of settings.

Definition

A formula $\varphi(x, b)$ *b*-divides over *C* if there is some $\theta(y, d)$ such that $\{\varphi(x, \tilde{b}) | \tilde{b} \models \theta(y, d)\}$ is *k*-inconsistent, and $\operatorname{tp}(b/Cd)$ is infinite and contains $\theta(y, d)$.

Definition

A type *b*-forks over C if it implies a disjunction of formulas which b-divide over C.

- þ-forking is a more uniform version of forking.
- One writes $a \perp_B^{\flat} C$ to indicate non- \flat -forking.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

So a₀ < x < b₀ does not b-divide. (Only things of the form x = b b-divide.)

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

So a₀ < x < b₀ does not b-divide. (Only things of the form x = b b-divide.)

うして ふゆう ふほう ふほう うらつ

• So $a_0 < x < b_0$ does not \flat -divide. (Only things of the form $x = b \ \flat$ -divide.)

Definition

When ${\textstyle \ }{\textstyle \ }^{\flat}$ is an independence relation on $\mathfrak{M}^{eq},$ we call the theory rosy.

• Note in this example if $a \perp_C b$, tp(a/C) does not imply tp(a/Cb)

• • a •	•	•	• • •	
• b ₁	• b ₂	• b ₃	• b ₄	 (<i>b</i> _i)

• • a • ~	•	• • •	• •	
• b • b ₁ :	• b ₂	• b ₃	• <i>b</i> 4	 (<i>b</i> _i)

• There is no \not{b} -dividing! xEb_1 and xEb_2 define disjoint sets, but xEb_1 and xEb define identical sets.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- There is no *þ*-dividing!
- But the problem would be solved if we could treated a/E as an element. Then the formula "x is in the equivalence class a/E" would p-divide.
- When one adds to \mathfrak{M} sorts for quotients of definable equivalence relations, one forms \mathfrak{M}^{eq} .
- Working in \mathfrak{M}^{eq} in a stable theory, forking and $\flat\mbox{-forking}$ coincide.
- In any theory, non-forking is the strongest independence relation and non-p-forking is the weakest.

Back to ACVF

- Just as forking "over reacts" to the presence of an order, þ-forking "over reacts" to the presence of an ultrametric.
- And b-forking independence is the weakest possible independence relation, so ACVF does not admit any independence relation.
- However, when one has C, L, M with $k(L) \bigcup_C k(M)$ and $\Gamma(L) \bigcup_C \Gamma(M)$ then when C is maximal and algebraically closed, $\operatorname{tp}(L/Ck(L)\Gamma(L))$ implies $\operatorname{tp}(L/M)$.
- Philosophy: Once one controls for the value group, ACVF is one stable structure sitting on top of another one.

Residue Field Domination

- Idea: After accounting for the value group, a real closed valued field is an o-minimal structure sitting on top of another o-minimal structure.
- Guess: If $C \models RCVF$ be a maximal field which is a submodel of both L and M, and suppose that $k(L)\Gamma(L) \perp_{C}^{b} k(M)\Gamma(M)$ then $\operatorname{tp}(L/Ck(L)\Gamma(L))$ together with $\operatorname{tp}_{<}(L/M)$ implies $\operatorname{tp}(L/M)$.
- Theorem (E., Haskell, Maříková)
- In fact, $tp(L/Ck(L)\Gamma(L))$ implies tp(L/M).
- Theorem (E., Haskell, Maříková)

In either RCVF or ACVF. Suppose C is maximal and a model. Then

- i) $a \bigsqcup_{C}^{b} b$ if and only if $k(Ca)\Gamma(Ca) \bigsqcup_{C}^{b} k(Cb)\Gamma(Cb)$,
- ii) $a \downarrow_C b$ if and only if $k(Ca)\Gamma(Ca) \downarrow_C k(Cb)\Gamma(Cb)$.