Introduction to Valued Fields

- Consider $\mathbb{R}(t)$, the field of rational functions with real coefficients.
- There is no $\sqrt{-1}$ so this field can be ordered. One way to do this is to say $p(t) < q(t)$ if for all sufficiently large $r \in \mathbb{R}$, $p(r) < q(r)$.
- Say $p(t) \equiv q(t)$ if $p(t) = O(q(t))$ and $q(t) = O(p(t))$. Then $\mathbb{R}(t)^*/\equiv$ is an ordered abelian group, usually called Γ and written additively.
- The quotient map $\nu : \mathbb{R}(t)^* \to \Gamma$ is called a valuation.
- The collection of all $p(t)$ in $\mathbb{R}(t)$ such that $p(t) = O(1)$ is a convex ring. This is called the valuation ring, which we will denote V.
- The collection of all $m \in V$ such that $1/m \notin V$ forms a maximal ideal, m of V. We call these elements infinitessimals.
- The map $\pi : V \to V/m$ is called the standard part map.
Valued Fields in Model Theory

- We will consider fields that are better behaved than $\mathbb{R}(t)$.
- Let R be the real closure of $\mathbb{R}(t)$
 - that is, close $\mathbb{R}(t)$ under square roots of positive elements, and insure that polynomials of odd degree have at least one root.
- We add Γ as a sort, as well as $\nu : R^* \rightarrow \Gamma$.
- We add $k = V/m$ as a sort as well as $\pi : V \rightarrow k$.
- This is a real closed valued field and we refer to its theory as RCVF.
- If you form a field extension by adjoining a root of -1, you have an algebraically closed valued field and we refer to its theory as ACVF.
Some background

- Haskell, Hrushovski, and Macpherson isolated a phenomena in models of algebraically closed valued fields they called stable domination.
 - A formula, \(\varphi(x, y) \), is stable if it does not have the order property.
 - i.e. there is no \((a_i b_i)_{i < \omega}\) such that \(\varphi(a_i, b_j) \text{ iff } i < j \).
 - Thus valued fields are not stable due to the value group.
 - However, if \(L \) and \(M \) satisfy ACVF and each contain a maximal algebraically closed \(C \) with \(k(L) \) algebraically independent from \(k(M) \) over \(k(C) \) and with \(\Gamma(L) \cap \Gamma(M) = \Gamma(C) \) then \(tp(L/Ck(L)\Gamma(L)) \) implies \(tp(L/M) \).
 - This (roughly) is the property called stable domination.
 - Why “However”? We need a brief detour into stability and independence relations.
What Is An Independence Relation?

• An independence relation, written $A \downarrow^I_C B$, should capture the idea that B and C together contain no additional interesting information about A than C does alone.

• An example: Let \mathcal{M} be a \mathbb{Q}-vector space, and let V be a definable subspace of \mathcal{M}^2.
 - For instance, let $\mathcal{M} := (\mathbb{R}, +, \{ q \cdot \}_{q \in \mathbb{Q}})$, and let V be the line $q_1 x + q_2 y = 0$.

• Consider two elements of \mathbb{R}^2, a and b, in the same coset of V. Intuitively, b should tell you more about a than you could say without parameters.
 - with the parameter b, one can say “$x - b$ is in V”. This statement is true of a, and if b_2, b_3, \ldots are in different cosets of V, then the formulas “$x - b_i$ is in V” define pairwise disjoint sets.
 - This is an example of “forking” and one writes $a \nsubseteq b$.
A Second Example

- Let \mathcal{M} be $(\mathbb{C}, +, \cdot)$
- Consider a tuple, a, contained in \mathbb{C}^3 not in any algebraic surface defined over \mathbb{Q}^{alg}.
 - if there is a surface, defined over B, containing a then it seems reasonable to say that b has more information about a than is available over the empty set, and one would write $a \nsubseteq^1 B$
 - Assume there is no curve containing a defined over B. If there is a curve containing a defined over $C \supseteq B$, then $a \nsubseteq^1 B$
- i.e. define $A \nsubseteq^1_B C$ to mean there is a tuple of elements of A which is contained over C in a variety of lower dimension than over B.
- It turns out that this is not a different independence relation. This is another example of “forking”, and so we write $A \nsubseteq^1_B C$.
Example

- Let $\mathcal{L} := \{E(x, y)\}$. Let T say that E is an equivalence relation with infinitely many equivalence classes, each of which is infinite.
Example

• Let $\mathcal{L} := \{E(x, y)\}$. Let T say that E is an equivalence relation with infinitely many equivalence classes, each of which is infinite.
Example

• Let \(\mathcal{L} := \{E(x, y)\} \). Let \(T \) say that \(E \) is an equivalence relation with infinitely many equivalence classes, each of which is infinite.

• Note that \(xEb_1 \) defines a set which includes \(a \), and the formulas \(xEb_1, xEb_2, xEb_3, \ldots \) define disjoint sets.
Example

• Let $\mathcal{L} := \{E(x, y)\}$. Let T say that E is an equivalence relation with infinitely many equivalence classes, each of which is infinite.

• Note that xEb_1 defines a set which includes a, and the formulas $xEb_1, xEb_2, xEb_3, \ldots$ define disjoint sets.

$E(x, b_1)$ divides over the empty set, and $\text{tp}(a/b_1)$ forks over the empty set.
Forking

Definition
A formula $\varphi(x, b)$ divides over C if there is $(b_i)_{i \in \mathbb{N}}$ such that
$\{\varphi(x, b_i) | i \in \mathbb{N}\}$ is k-inconsistent, and each $b_i \in tp(b/C)$.

Definition
A type forks over C if it implies a disjunction of formulas which divide over C.

- Each example of an independence relation so far has been non-forking.
- Non forking is written $a \perp_{b} c$
Unique non-forking extensions

- Non-forking is best behaved in theories that are stable (i.e. no formula has the order property).
- Here one has, among other things, the fact that if $a \downarrow_C B$ and C is a model (or just algebraically closed in M^{eq}) then $\text{tp}(a/C)$ implies $\text{tp}(a/BC)$.
- Hence the “however” from many slides ago:
 - However, if L and M satisfy ACVF and each contain a maximal algebraically closed subfield C with $k(L)$ algebraically independent from $k(M)$ over $k(C)$ and with $\Gamma(L) \cap \Gamma(M) = \Gamma(C)$ then $\text{tp}(L/Ck(L)\Gamma(L))$ implies $\text{tp}(L/M)$.
What goes wrong when there is an order

- Let $\mathcal{L} := \{<\}$. Let T be the theory of dense linear orders.
- $(\mathbb{Q}, <)$
What goes wrong when there is an order

- Let $\mathcal{L} := \{<\}$. Let T be the theory of dense linear orders.
- $(\mathbb{Q}, <)$
What goes wrong when there is an order

- Let $\mathcal{L} := \{<\}$. Let T be the theory of dense linear orders.
- $(\mathbb{Q}, <)$
What goes wrong when there is an order

- Let \(\mathcal{L} := \{<\} \). Let \(T \) be the theory of dense linear orders.
- \((\mathbb{Q},<)\)
What goes wrong when there is an order

• Let $\mathcal{L} := \{<\}$. Let T be the theory of dense linear orders.
• $(\mathbb{Q}, <)$

\[a_0 < x < b_0 \quad (a_1 < x < b_1) \quad (a_2 < x < b_2) \]
What goes wrong when there is an order

• Let $\mathcal{L} := \{<\}$. Let T be the theory of dense linear orders.
• $(\mathbb{Q}, <)$

\[
\begin{align*}
(a_0 < x < b_0) \quad &\quad (a_1 < x < b_1) \quad &\quad (a_2 < x < b_2) \\
\end{align*}
\]

So $a_0 < x < b_0$ divides over the empty set
What goes wrong when there is an order

- Let $\mathcal{L} := \{<\}$. Let T be the theory of dense linear orders.
- $(\mathbb{Q}, <)$

\[a_0 < x < b_0 \quad a_1 < x < b_1 \quad a_2 < x < b_2 \]

So $a_0 < x < b_0$ divides over the empty set.
What goes wrong when there is an order

- Let $\mathcal{L} := \{<\}$. Let T be the theory of dense linear orders.
- $(\mathbb{Q}, <)$

\[
\begin{align*}
(a_0 < x < b_0) & \quad (a_1 < x < b_1) & \quad (a_2 < x < b_2) \\
(c_0 < x < d_0) & \\
\end{align*}
\]

So $a_0 < x < b_0$ divides over the empty set.
What goes wrong when there is an order

- Let $\mathcal{L} := \{<\}$. Let T be the theory of dense linear orders.
- $(\mathbb{Q}, <)$

So $a_0 < x < b_0$ divides over the empty set.
What goes wrong when there is an order

- Let $\mathcal{L} := \{<\}$. Let T be the theory of dense linear orders.
- $(\mathbb{Q}, <)$

So $c_0 < x < d_0$ divides over the empty set.

So $a_0 < x < b_0$ divides over $\{a_0, b_0\}$.
What goes wrong when there is an order

- Let $\mathcal{L} := \{<\}$. Let T be the theory of dense linear orders.
- $(\mathbb{Q}, <)$

So $c_0 < x < d_0$ divides over $\{a_0, b_0\}$. There is no end to the “information” that you can have about an element. So forking is not an independence relation.
\[\mathfrak{b}\text{-Forking} \]

- There is a generalization of stability (and of simplicity), called *rosiness* that is not ruined by the existence of an order.
- We want a definition similar to forking but that is well-behaved in a larger variety of settings.

Definition

A formula \(\varphi(x, b) \) \(\mathfrak{b}\)-divides over \(C \) if there is some \(\theta(y, d) \) such that \(\{ \varphi(x, b) | b \models \theta(y, d) \} \) is \(k \)-inconsistent, and \(\text{tp}(b/Cd) \) is infinite and contains \(\theta(y, d) \).

Definition

A type \(\mathfrak{b}\text{-forks} \) over \(C \) if it implies a disjunction of formulas which \(\mathfrak{b}\)-divide over \(C \).

- \(\mathfrak{b}\)-forking is a more uniform version of forking.
- One writes \(a \downarrow^\mathfrak{b}_B C \) to indicate non-\(\mathfrak{b}\)-forking.
Back to $(\mathbb{Q}, <)$
Back to $(\mathbb{Q}, <)$
Back to \((\mathbb{Q}, <)\)
Back to \((\mathbb{Q}, <)\)
So $a_0 < x < b_0$ does not β-divide. (Only things of the form $x = b$ β-divide.)
So $a_0 < x < b_0$ does not \exists-divide. (Only things of the form $x = b$ \exists-divide.)
Back to \((\mathbb{Q}, <)\)

- So \(a_0 < x < b_0\) does not \(\mathfrak{b}\)-divide. (Only things of the form \(x = b\) \(\mathfrak{b}\)-divide.)

Definition

When \(\independ^b\) is an independence relation on \(\mathcal{M}^{eq}\), we call the theory \emph{rosy}.

- Note in this example if \(a \independ_C b\), \(tp(a/C)\) does not imply \(tp(a/Cb)\)
There is no \(b \)-dividing! \(xEb_1 \) and \(xEb_2 \) define disjoint sets, but \(xEb_1 \) and \(xEb \) define identical sets.
• There is no \mathfrak{b}-dividing!
• But the problem would be solved if we could treated a/E as an element. Then the formula “x is in the equivalence class a/E” would \mathfrak{b}-divide.
• When one adds to \mathcal{M} sorts for quotients of definable equivalence relations, one forms \mathcal{M}^{eq}.
• Working in \mathcal{M}^{eq} in a stable theory, forking and \mathfrak{b}-forking coincide.
• In any theory, non-forking is the strongest independence relation and non-\mathfrak{b}-forking is the weakest.
Back to ACVF

- Just as forking “over reacts” to the presence of an order, \(\pi \)-forking “over reacts” to the presence of an ultrametric.
- And \(\pi \)-forking independence is the weakest possible independence relation, so ACVF does not admit any independence relation.
- However, when one has \(C, L, M \) with \(k(L) \downarrow_C k(M) \) and \(\Gamma(L) \downarrow_C \Gamma(M) \) then when \(C \) is maximal and algebraically closed, \(tp(L/Ck(L)\Gamma(L)) \) implies \(tp(L/M) \).
- Philosophy: Once one controls for the value group, ACVF is one stable structure sitting on top of another one.
Residue Field Domination

• Idea: After accounting for the value group, a real closed valued field is an o-minimal structure sitting on top of another o-minimal structure.

• Guess: If $C \models RCVF$ be a maximal field which is a submodel of both L and M, and suppose that $k(L)\Gamma(L) \downarrow^b_C k(M)\Gamma(M)$ then $tp(L/Ck(L)\Gamma(L))$ together with $tp < (L/M)$ implies $tp(L/M)$.

Theorem (E., Haskell, Maříková)

In fact, $tp(L/Ck(L)\Gamma(L))$ implies $tp(L/M)$.

Theorem (E., Haskell, Maříková)

In either $RCVF$ or $ACVF$. Suppose C is maximal and a model. Then

i) $a \downarrow^b_C b$ if and only if $k(Ca)\Gamma(Ca) \downarrow^b_C k(Cb)\Gamma(Cb),$

ii) $a \downarrow_C b$ if and only if $k(Ca)\Gamma(Ca) \downarrow_C k(Cb)\Gamma(Cb).$