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Introduction to Valued Fields

• Consider R(t), the field of rational functions with real
coefficients.

• There is no
√
−1 so this field can be ordered. One way to do

this is to say p(t) < q(t) if for all sufficiently large r ∈ R,
p(r) < q(r).

• Say p(t) ≡ q(t) if p(t) = O(q(t)) and q(t) = O(p(t)). Then
R(t)∗/ ≡ is an ordered abelian group, usually called Γ and
written additively.

• The quotient map v : R(t)∗ → Γ is called a valuation.
• The collection of all p(t) in R(t) such that p(t) = O(1) is a
convex ring. This is called the valuation ring, which we will
denote V .

• The collection of all m ∈ V such that 1/m /∈ V forms a
maximal ideal, m of V . We call these elements infinitessimals.

• The map π : V → V /m is called the standard part map.



Valued Fields in Model Theory

• We will consider fields that are better behaved than R(t).
• Let R be the the real closure of R(t)

• that is, close R(t) under square roots of positive elements, and
insure that polynomials of odd degree have at least one root.

• We add Γ as a sort, as well as v : R∗ → Γ.
• We add k = V /m as a sort as well as π : V → k .
• This is a real closed valued field and we refer to its theory as
RCVF.

• If you form a field extension by adjoining a root of −1, you
have an algebraically closed valued field and we refer to its
theory as ACVF.



Some background

• Haskell, Hrushovski, and Macpherson isolated a phenomena in
models of algebraically closed valued fields they called stable
domination.
• A formula, ϕ(x , y), is stable if it does not have the order

property.
• i.e. there is no (aibi )i<ω such that ϕ(ai , bj ) iff i < j .

• Thus valued fields are not stable due to the value group.
• However, if L and M satisfy ACVF and each contain a

maximal algebraically closed C with k(L) algebraically
independent from k(M) over k(C ) and with
Γ(L) ∩ Γ(M) = Γ(C ) then tp(L/Ck(L)Γ(L)) implies tp(L/M).
• This (roughly) is the property called stable domination.

• Why “However”? We need a brief detour into stability and
independence relations.



What Is An Independence Relation?

• An independence relation, written A |̂ I
C B , should capture the

idea that B and C together contain no additional interesting
information about A than C does alone.

• An example: Let M be a Q-vector space, and let V be a
definable subspace of M2.
• For instance, let M := (R,+, {q·}q∈Q), and let V be the line

q1x + q2y = 0.
• Consider two elements of R2, a and b, in the same coset of V .
Intuitively, b should tell you more about a then you could say
without parameters.
• with the parameter b, one can say “x − b is in V ”. This

statement is true of a, and if b2, b3, . . . are in different cosets
of V , then the formulas “x − bi is in V ” define pairwise
disjoint sets.
• This is an example of “forking” and one writes a 6 |̂ b.



A Second Example

• Let M be (C,+, ·)
• Consider a tuple, a, contained in C3 not in any algebraic
surface defined over Qalg .
• if there is a surface, defined over B, containing a then it seems

reasonable to say that b has more information about a than is
available over the empty set, and one would write a 6 |̂ I B

• Assume there is no curve containing a defined over B. If there
is a curve containing a defined over C ⊇ B, then a 6 |̂ I

B
C

• i.e. define A 6 |̂ I
B C to mean there is a tuple of elements of A

which is contained over C in a variety of lower dimension than
over B.

• It turns out that this is not a different independence relation.
This is another example of “forking”, and so we write A 6 |̂ B C .



Example

• Let L := {E (x , y)}. Let T say that E is an equivalence
relation with infinitely many equivalence classes, each of which
is infinite.

• E (x , b1) divides over the empty set, and tp(a/b1) forks over
the empty set.
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Forking

Definition
A formula ϕ(x , b) divides over C if there is (bi )i∈N such that
{ϕ(x , bi )|i ∈ N} is k-inconsistent, and each bi ∈ tp(b/C ).

Definition
A type forks over C if it implies a disjunction of formulas which
divide over C .

• Each example of an independence relation so far has been
non-forking.

• Non forking is written a |̂ b c



Unique non-forking extensions

• Non-forking is best behaved in theories that are stable (i.e. no
formula has the order property).

• Here one has, among other things, the fact that if a |̂ C B and
C is a model (or just algebraically closed in Meq) then
tp(a/C ) implies tp(a/BC ).

• Hence the “however” from many slides ago:
• However, if L and M satisfy ACVF and each contain a

maximal algebraically closed subfield C with k(L) algebraically
independent from k(M) over k(C ) and with
Γ(L) ∩ Γ(M) = Γ(C ) then tp(L/Ck(L)Γ(L)) implies tp(L/M).



What goes wrong when there is an order

• Let L := {<}. Let T be the theory of dense linear orders.
• (Q, <)
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What goes wrong when there is an order
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So c0 < x < d0 divides over {a0, b0}. There is no end to the
“information” that you can have about an element. So forking
is not an independence relation.



þ-Forking

• There is a generalization of stability (and of simplicity), called
rosiness that is not ruined by the existence of an order.

• We want a definition similar to forking but that is
well-behaved in a larger variety of settings.

Definition
A formula ϕ(x , b) þ-divides over C if there is some θ(y , d) such
that {ϕ(x , b̃)|b̃ |= θ(y , d)} is k-inconsistent, and tp(b/Cd) is
infinite and contains θ(y , d).

Definition
A type þ-forks over C if it implies a disjunction of formulas which
þ-divide over C .
• þ-forking is a more uniform version of forking.
• One writes a |̂ þ

B C to indicate non-þ-forking.
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Back to (Q, <)

oo
a0<x<b0

a3<x<b3

a1<x<b1 //( ( ) ( ) )

• So a0 < x < b0 does not þ-divide. (Only things of the form
x = b þ-divide.)

Definition
When |̂ þ is an independence relation on Meq, we call the theory
rosy.

• Note in this example if a |̂ C b, tp(a/C ) does not imply
tp(a/Cb)
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• • • •
• a • • •
• • • •
• b̃ • • • · · ·
• b1 • b2 • b3 • b4 (bi )
...

...
...
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• There is no þ-dividing! xEb1 and xEb2 define disjoint sets, but
xEb1 and xE b̃ define identical sets.



• • • •
• a • • •
• • • •
• b̃ • • • · · ·
• b1 • b2 • b3 • b4 (bi )
...

...
...

...

• There is no þ-dividing!
• But the problem would be solved if we could treated a/E as
an element. Then the formula “x is in the equivalence class
a/E ” would þ-divide.

• When one adds to M sorts for quotients of definable
equivalence relations, one forms Meq.

• Working in Meq in a stable theory, forking and þ-forking
coincide.

• In any theory, non-forking is the strongest independence
relation and non-þ-forking is the weakest.



Back to ACVF

• Just as forking “over reacts” to the presence of an order,
þ-forking “over reacts” to the presence of an ultrametric.

• And þ-forking independence is the weakest possible
independence relation, so ACVF does not admit any
independence relation.

• However, when one has C , L,M with k(L) |̂ C k(M) and
Γ(L) |̂ þ

C Γ(M) then when C is maximal and algebraically
closed, tp(L/Ck(L)Γ(L)) implies tp(L/M).

• Philosophy: Once one controls for the value group, ACVF is
one stable structure sitting on top of another one.



Residue Field Domination

• Idea: After accounting for the value group, a real closed
valued field is an o-minimal structure sitting on top of another
o-minimal structure.

• Guess: If C |= RCVF be a maximal field which is a submodel
of both L and M, and suppose that k(L)Γ(L) |̂ þ

C k(M)Γ(M)
then tp(L/Ck(L)Γ(L)) together with tp<(L/M) implies
tp(L/M).

Theorem (E., Haskell, Maříková)
In fact, tp(L/Ck(L)Γ(L)) implies tp(L/M).

Theorem (E., Haskell, Maříková)
In either RCVF or ACVF. Suppose C is maximal and a model.
Then
i) a |̂ þ

C b if and only if k(Ca)Γ(Ca) |̂ þ
C k(Cb)Γ(Cb),

ii) a |̂ C b if and only if k(Ca)Γ(Ca) |̂ C k(Cb)Γ(Cb).
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