Residue Field Domination

Clifton Ealy
Department of Mathematics, Western Illinois University

February 10th, 2017

Introduction to Valued Fields

- Consider $\mathbb{R}(t)$, the field of rational functions with real coefficients.
- There is no $\sqrt{-1}$ so this field can be ordered. One way to do this is to say $p(t)<q(t)$ if for all sufficiently large $r \in \mathbb{R}$, $p(r)<q(r)$.
- Say $p(t) \equiv q(t)$ if $p(t)=O(q(t))$ and $q(t)=O(p(t))$. Then $R(t)^{*} / \equiv$ is an ordered abelian group, usually called Γ and written additively.
- The quotient map $v: R(t)^{*} \rightarrow \Gamma$ is called a valuation.
- The collection of all $p(t)$ in $R(t)$ such that $p(t)=O(1)$ is a convex ring. This is called the valuation ring, which we will denote V.
- The collection of all $m \in V$ such that $1 / m \notin V$ forms a maximal ideal, \mathfrak{m} of V. We call these elements infinitessimals.
- The $\operatorname{map} \pi: V \rightarrow V / \mathfrak{m}$ is called the standard part map.

Valued Fields in Model Theory

- We will consider fields that are better behaved than $\mathbb{R}(t)$.
- Let R be the the real closure of $\mathbb{R}(t)$
- that is, close $\mathbb{R}(t)$ under square roots of positive elements, and insure that polynomials of odd degree have at least one root.
- We add Γ as a sort, as well as $v: R^{*} \rightarrow \Gamma$.
- We add $k=V / \mathfrak{m}$ as a sort as well as $\pi: V \rightarrow k$.
- This is a real closed valued field and we refer to its theory as RCVF.
- If you form a field extension by adjoining a root of -1 , you have an algebraically closed valued field and we refer to its theory as ACVF.

Some background

- Haskell, Hrushovski, and Macpherson isolated a phenomena in models of algebraically closed valued fields they called stable domination.
- A formula, $\varphi(x, y)$, is stable if it does not have the order property.
- i.e. there is no $\left(a_{i} b_{i}\right)_{i<\omega}$ such that $\varphi\left(a_{i}, b_{j}\right)$ iff $i<j$.
- Thus valued fields are not stable due to the value group.
- However, if L and M satisfy ACVF and each contain a maximal algebraically closed C with $k(L)$ algebraically independent from $k(M)$ over $k(C)$ and with $\Gamma(L) \cap \Gamma(M)=\Gamma(C)$ then $\operatorname{tp}(L / C k(L) \Gamma(L))$ implies $\operatorname{tp}(L / M)$.
- This (roughly) is the property called stable domination.
- Why "However"? We need a brief detour into stability and independence relations.

What Is An Independence Relation?

- An independence relation, written $A \downarrow_{C}{ }_{C} B$, should capture the idea that B and C together contain no additional interesting information about A than C does alone.
- An example: Let \mathfrak{M} be a \mathbb{Q}-vector space, and let V be a definable subspace of \mathfrak{M}^{2}.
- For instance, let $\mathfrak{M}:=\left(\mathbb{R},+,\{q \cdot\}_{q \in \mathbb{Q}}\right)$, and let V be the line

$$
q_{1} x+q_{2} y=0
$$

- Consider two elements of \mathbb{R}^{2}, a and b, in the same coset of V. Intuitively, b should tell you more about a then you could say without parameters.
- with the parameter b, one can say " $x-b$ is in V ". This statement is true of a, and if b_{2}, b_{3}, \ldots are in different cosets of V, then the formulas " $x-b_{i}$ is in V " define pairwise disjoint sets.
- This is an example of "forking" and one writes $a \nless b$.

A Second Example

- Let \mathfrak{M} be $(\mathbb{C},+, \cdot)$
- Consider a tuple, a, contained in \mathbb{C}^{3} not in any algebraic surface defined over $\mathbb{Q}^{\text {alg }}$.
- if there is a surface, defined over B, containing a then it seems reasonable to say that b has more information about a than is available over the empty set, and one would write a $\not X^{\prime} B$
- Assume there is no curve containing a defined over B. If there is a curve containing a defined over $C \supseteq B$, then a $\mathbb{X}_{B}^{\prime} C$
- i.e. define $A \mathbb{X}_{B}^{\prime} C$ to mean there is a tuple of elements of A which is contained over C in a variety of lower dimension than over B.
- It turns out that this is not a different independence relation. This is another example of "forking", and so we write $A \mathbb{X}_{B} C$.

Example

- Let $\mathscr{L}:=\{E(x, y)\}$. Let T say that E is an equivalence relation with infinitely many equivalence classes, each of which is infinite.

Example

- Let $\mathscr{L}:=\{E(x, y)\}$. Let T say that E is an equivalence relation with infinitely many equivalence classes, each of which is infinite.

Example

- Let $\mathscr{L}:=\{E(x, y)\}$. Let T say that E is an equivalence relation with infinitely many equivalence classes, each of which is infinite.
- Note that $x E b_{1}$ defines a set which includes a, and the formulas $x E b_{1}, x E b_{2}, x E b_{3}, \ldots$ define disjoint sets.

\bullet		\bullet		\bullet	\bullet			
\bullet	a	\bullet		\bullet		\bullet		
\bullet		\bullet		\bullet		\bullet		
\bullet		\bullet		\bullet		\bullet		\cdots
\bullet	b_{1}	\bullet	b_{2}	\bullet	b_{3}	\bullet	b_{4}	
\vdots		\vdots		\vdots		\vdots		

Example

- Let $\mathscr{L}:=\{E(x, y)\}$. Let T say that E is an equivalence relation with infinitely many equivalence classes, each of which is infinite.
- Note that $x E b_{1}$ defines a set which includes a, and the formulas $x E b_{1}, x E b_{2}, x E b_{3}, \ldots$ define disjoint sets.

- $E\left(x, b_{1}\right)$ divides over the empty set, and $\operatorname{tp}\left(a / b_{1}\right)$ forks over the empty set.

Forking

Definition
A formula $\varphi(x, b)$ divides over C if there is $\left(b_{i}\right)_{i \in \mathbb{N}}$ such that $\left\{\varphi\left(x, b_{i}\right) \mid i \in \mathbb{N}\right\}$ is k-inconsistent, and each $b_{i} \in \operatorname{tp}(b / C)$.

Definition
A type forks over C if it implies a disjunction of formulas which divide over C.

- Each example of an independence relation so far has been non-forking.
- Non forking is written $a \downarrow_{b} c$

Unique non-forking extensions

- Non-forking is best behaved in theories that are stable (i.e. no formula has the order property).
- Here one has, among other things, the fact that if $a \downarrow_{C} B$ and C is a model (or just algebraically closed in $M^{e q}$) then $\operatorname{tp}(a / C)$ implies $\operatorname{tp}(a / B C)$.
- Hence the "however" from many slides ago:
- However, if L and M satisfy ACVF and each contain a maximal algebraically closed subfield C with $k(L)$ algebraically independent from $k(M)$ over $k(C)$ and with $\Gamma(L) \cap \Gamma(M)=\Gamma(C)$ then $\operatorname{tp}(L / C k(L) \Gamma(L))$ implies $\operatorname{tp}(L / M)$.

What goes wrong when there is an order

- Let $\mathscr{L}:=\{<\}$. Let T be the theory of dense linear orders.
- $(\mathbb{Q},<)$

What goes wrong when there is an order

- Let $\mathscr{L}:=\{<\}$. Let T be the theory of dense linear orders.
- $(\mathbb{Q},<)$

What goes wrong when there is an order

- Let $\mathscr{L}:=\{<\}$. Let T be the theory of dense linear orders.
- $(\mathbb{Q},<)$

What goes wrong when there is an order

- Let $\mathscr{L}:=\{<\}$. Let T be the theory of dense linear orders.
- $(\mathbb{Q},<)$

What goes wrong when there is an order

- Let $\mathscr{L}:=\{<\}$. Let T be the theory of dense linear orders.
- $(\mathbb{Q},<)$

What goes wrong when there is an order

- Let $\mathscr{L}:=\{<\}$. Let T be the theory of dense linear orders.
- $(\mathbb{Q},<)$

So $a_{0}<x<b_{0}$ divides over the empty set

What goes wrong when there is an order

- Let $\mathscr{L}:=\{<\}$. Let T be the theory of dense linear orders.
- $(\mathbb{Q},<)$

What goes wrong when there is an order

- Let $\mathscr{L}:=\{<\}$. Let T be the theory of dense linear orders.
- $(\mathbb{Q},<)$

What goes wrong when there is an order

- Let $\mathscr{L}:=\{<\}$. Let T be the theory of dense linear orders.
- $(\mathbb{Q},<)$

What goes wrong when there is an order

- Let $\mathscr{L}:=\{<\}$. Let T be the theory of dense linear orders.
- $(\mathbb{Q},<)$

So $c_{0}<x<d_{0}$ divides over $\left\{a_{0}, b_{0}\right\}$.

What goes wrong when there is an order

- Let $\mathscr{L}:=\{<\}$. Let T be the theory of dense linear orders.
- $(\mathbb{Q},<)$

So $c_{0}<x<d_{0}$ divides over $\left\{a_{0}, b_{0}\right\}$. There is no end to the "information" that you can have about an element. So forking is not an independence relation.

p-Forking

- There is a generalization of stability (and of simplicity), called rosiness that is not ruined by the existence of an order.
- We want a definition similar to forking but that is well-behaved in a larger variety of settings.

Definition

A formula $\varphi(x, b) b$-divides over C if there is some $\theta(y, d)$ such that $\{\varphi(x, \tilde{b}) \mid \tilde{b}=\theta(y, d)\}$ is k-inconsistent, and $\operatorname{tp}(b / C d)$ is infinite and contains $\theta(y, d)$.

Definition

A type b-forks over C if it implies a disjunction of formulas which b-divide over C.

- b-forking is a more uniform version of forking.
- One writes $a \downarrow_{B}^{p} C$ to indicate non-b-forking.

Back to $(\mathbb{Q},<)$

Back to $(\mathbb{Q},<)$

Back to $(\mathbb{Q},<)$

Back to $(\mathbb{Q},<)$

Back to $(\mathbb{Q},<)$

- So $a_{0}<x<b_{0}$ does not p -divide. (Only things of the form $x=b$-divide.)

Back to $(\mathbb{Q},<)$

- So $a_{0}<x<b_{0}$ does not p -divide. (Only things of the form $x=b$-divide.)

Back to $(\mathbb{Q},<)$

- So $a_{0}<x<b_{0}$ does not b -divide. (Only things of the form $x=b$-divide.)

Definition
When \downarrow^{b} is an independence relation on $\mathfrak{M}^{e q}$, we call the theory rosy.

- Note in this example if $a \downarrow_{C} b, \operatorname{tp}(a / C)$ does not imply $\operatorname{tp}(a / C b)$

\bullet		\bullet		\bullet	\bullet			
\bullet	a	\bullet		\bullet		\bullet		
\bullet		\bullet		\bullet		\bullet		
\bullet		\bullet		\bullet		\bullet		\cdots
\bullet	b_{1}	\bullet	b_{2}	\bullet	b_{3}	\bullet	b_{4}	
\vdots		\vdots		\vdots		\vdots		

- There is no p-dividing! $x E b_{1}$ and $x E b_{2}$ define disjoint sets, but $x E b_{1}$ and $x E \widetilde{b}$ define identical sets.

- There is no b-dividing!
- But the problem would be solved if we could treated a / E as an element. Then the formula " x is in the equivalence class a/E' would p -divide.
- When one adds to \mathfrak{M} sorts for quotients of definable equivalence relations, one forms $\mathfrak{M}^{e q}$.
- Working in $\mathfrak{M}^{e q}$ in a stable theory, forking and p-forking coincide.
- In any theory, non-forking is the strongest independence relation and non-p-forking is the weakest.

Back to ACVF

- Just as forking "over reacts" to the presence of an order, b-forking "over reacts" to the presence of an ultrametric.
- And p-forking independence is the weakest possible independence relation, so ACVF does not admit any independence relation.
- However, when one has C, L, M with $k(L) \perp_{C} k(M)$ and $\Gamma(L) \downarrow_{C}^{p} \Gamma(M)$ then when C is maximal and algebraically closed, $\operatorname{tp}(L / C k(L) \Gamma(L))$ implies $\operatorname{tp}(L / M)$.
- Philosophy: Once one controls for the value group, ACVF is one stable structure sitting on top of another one.

Residue Field Domination

- Idea: After accounting for the value group, a real closed valued field is an o-minimal structure sitting on top of another o-minimal structure.
- Guess: If $C \models R C V F$ be a maximal field which is a submodel of both L and M, and suppose that $k(L) \Gamma(L) \downarrow_{C}^{p} k(M) \Gamma(M)$ then $\operatorname{tp}(L / C k(L) \Gamma(L))$ together with $\operatorname{tp}_{<}(L / M)$ implies $\operatorname{tp}(L / M)$.

Theorem (E., Haskell, Maříková)
In fact, $\operatorname{tp}(L / C k(L) \Gamma(L))$ implies $\operatorname{tp}(L / M)$.
Theorem (E., Haskell, Maříková)
In either RCVF or ACVF. Suppose C is maximal and a model.
Then
i) $a \downarrow_{C}^{b} b$ if and only if $k(C a) \Gamma(C a) \downarrow_{C}^{b} k(C b) \Gamma(C b)$,
ii) $a \downarrow_{C} b$ if and only if $k(C a) \Gamma(C a) \downarrow_{C} k(C b) \Gamma(C b)$.

