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Introduction to Valued Fields

Consider R(t), the field of rational functions with real
coefficients.

There is no /—1 so this field can be ordered. One way to do
this is to say p(t) < q(t) if for all sufficiently large r € R,
p(r) < q(r).

Say p(t) = q(t) if p(t) = O(q(t)) and g(t) = O(p(t)). Then
R(t)*/ = is an ordered abelian group, usually called ' and
written additively.

The quotient map v : R(t)* — I is called a valuation.

The collection of all p(t) in R(t) such that p(t) = O(1) is a
convex ring. This is called the valuation ring, which we will
denote V.

The collection of all m € V such that 1/m ¢ V forms a
maximal ideal, m of V. We call these elements infinitessimals.

The map 7 : V — V/m is called the standard part map.



Valued Fields in Model Theory

We will consider fields that are better behaved than R(t).
Let R be the the real closure of R(t)

e that is, close R(t) under square roots of positive elements, and
insure that polynomials of odd degree have at least one root.

We add T as a sort, as well as v : R* — T.
We add k = V/m as asort as well as 7 : V — k.

This is a real closed valued field and we refer to its theory as
RCVF.

If you form a field extension by adjoining a root of —1, you
have an algebraically closed valued field and we refer to its
theory as ACVF.



Some background

e Haskell, Hrushovski, and Macpherson isolated a phenomena in
models of algebraically closed valued fields they called stable
domination.

e A formula, ¢(x,y), is stable if it does not have the order
property.

e i.e. there is no (ajb;)i<. such that ¢(a;, b;) iff i < j.

e Thus valued fields are not stable due to the value group.

e However, if L and M satisfy ACVF and each contain a
maximal algebraically closed C with k(L) algebraically
independent from k(M) over k(C) and with
ML) Nr(M)=Tr(C) then tp(L/Ck(L)I(L)) implies tp(L/M).

e This (roughly) is the property called stable domination.

e Why “However’? We need a brief detour into stability and

independence relations.



What Is An Independence Relation?

e An independence relation, written A J/'C B, should capture the
idea that B and C together contain no additional interesting
information about A than C does alone.

e An example: Let 90t be a Q-vector space, and let V be a
definable subspace of M2

e For instance, let M := (R, +,{q-}qcq). and let V be the line
qix + qay = 0.
e Consider two elements of R2, a and b, in the same coset of V.

Intuitively, b should tell you more about a then you could say
without parameters.

e with the parameter b, one can say “x — bis in V". This
statement is true of a, and if by, b3, ... are in different cosets
of V, then the formulas “x — b; is in V"' define pairwise
disjoint sets.

e This is an example of “forking” and one writes a f b.



A Second Example

Let M be (C,+,")
Consider a tuple, a, contained in C3 not in any algebraic
surface defined over Q2.

o if there is a surface, defined over B, containing a then it seems
reasonable to say that b has more information about a than is
available over the empty set, and one would write a j/' B

e Assume there is no curve containing a defined over B. If there
is a curve containing a defined over C D B, then a J//IB C

i.e. define A j/'B C to mean there is a tuple of elements of A
which is contained over C in a variety of lower dimension than
over B.

It turns out that this is not a different independence relation.
This is another example of “forking”, and so we write A \LB C.



Example

o Let ¥ :={E(x,y)}. Let T say that E is an equivalence
relation with infinitely many equivalence classes, each of which
is infinite.
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Example

o Let £ :={E(x,y)}. Let T say that E is an equivalence
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e E(x, by) divides over the empty set, and tp(a/b1) forks over
the empty set.




Forking

Definition
A formula ¢(x, b) divides over C if there is (b;)icn such that
{¢(x, bi)|i € N} is k-inconsistent, and each b; € tp(b/C).

Definition
A type forks over C if it implies a disjunction of formulas which
divide over C.

e Each example of an independence relation so far has been
non-forking.

e Non forking is written a | , ¢



Unique non-forking extensions

¢ Non-forking is best behaved in theories that are stable (i.e. no
formula has the order property).

e Here one has, among other things, the fact that if a J/C B and
C is a model (or just algebraically closed in M) then
tp(a/C) implies tp(a/BC).

e Hence the “however” from many slides ago:

e However, if L and M satisfy ACVF and each contain a
maximal algebraically closed subfield C with k(L) algebraically

independent from k(M) over k(C) and with
r(L)yNr(M)=T(C) then tp(L/Ck(L) (L)) implies tp(L/M).
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What goes wrong when there is an order

o Let £ :={<}. Let T be the theory of dense linear orders.
* (@)

ag <x<b a1 <x<b ar<x<b
[ 0 0\ / 1 1\ [ 2 2\
\ ] \ U \ ]

So ag < x < by
divides over
the empty set
{c0<x<d0\ (c1<x<d1)

So ¢y < x < dp divides over {ag, bp}.  There is no end to the
“information” that you can have about an element. So forking
is not an independence relation.



pb-Forking

e There is a generalization of stability (and of simplicity), called
rosiness that is not ruined by the existence of an order.

e We want a definition similar to forking but that is
well-behaved in a larger variety of settings.
Definition
A formula ¢(x, b) p-divides over C if there is some 6(y, d) such
that {o(x, b)|b |= 0(y, d)} is k-inconsistent, and tp(b/Cd) is
infinite and contains 6(y, d).

Definition

A type p-forks over C if it implies a disjunction of formulas which
b-divide over C.

e p-forking is a more uniform version of forking.

e One writes a \LZ C to indicate non-p-forking.
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Back to (Q, <)

ag<x<b, a1 <x<b
o \ At N
{ { 1 € 1
az<x<bz

N——

e So ap < x < by does not p-divide. (Only things of the form
x = b p-divide.)

Definition
When | P is an independence relation on 971%9, we call the theory
rosy.

e Note in this example if a | - b, tp(a/C) does not imply
tp(a/Cb)



by




e There is no p-dividing! xEb; and xEb, define disjoint sets, but
xEb; and xEb define identical sets.
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There is no p-dividing!

But the problem would be solved if we could treated a/E as
an element. Then the formula “x is in the equivalence class
a/E" would p-divide.

When one adds to 91 sorts for quotients of definable
equivalence relations, one forms i€,

Working in 9019 in a stable theory, forking and p-forking
coincide.

In any theory, non-forking is the strongest independence
relation and non-p-forking is the weakest.




Back to ACVF

Just as forking “over reacts” to the presence of an order,
b-forking “over reacts” to the presence of an ultrametric.

And p-forking independence is the weakest possible
independence relation, so ACVF does not admit any
independence relation.

However, when one has C, L, M with k(L) | . k(M) and
r(L) \Ué (M) then when C is maximal and algebraically
closed, tp(L/Ck(L)I (L)) implies tp(L/M).

Philosophy: Once one controls for the value group, ACVF is
one stable structure sitting on top of another one.



Residue Field Domination

e Idea: After accounting for the value group, a real closed
valued field is an o-minimal structure sitting on top of another
o-minimal structure.

e Guess: If C = RCVF be a maximal field which is a submodel
of both L and M, and suppose that k(L)I'(L) J/bc k(M) (M)
then tp(L/Ck(L)I (L)) together with tp_(L/M) implies
tp(L/M).

Theorem (E., Haskell, Marikova)
In fact, tp(L/Ck(L)T (L)) implies tp(L/M).

Theorem (E., Haskell, Marikova)

In either RCVF or ACVFF. Suppose C is maximal and a model.
Then

i) a |2 b if and only if k(Ca)[(Ca) |2 k(Cb)T(Cb),
i) a | b ifandonlyif k(Ca)l(Ca) | . k(Cb)I(Cb).
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