
The algebra of topology:
Tarski’s program 70 years later

Guram Bezhanishvili
New Mexico State University

March 18, 2016



100 year old story

1910’s:

Hausdorff gave an abstract definition of space by means of
neighborhood systems of points of the space.

Brouwer started developing grounds for rejecting classical
reasoning in favor of constructive reasoning.

Lewis suggested to resolve the paradoxes of material
implication by introducing strict implication. This resulted
in a number of logical systems, fourth of which will play a
prominent role in our story.
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Alexandroff gave another, now widely accepted, pointfree
definition of a topological space by means of open sets.

Several attempts were made to analyze carefully Brouwer’s
new logic (Kolmogorov, Glivenko, Heyting).
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The beginning of the program

1930’s:

Gödel defined a translation of intuitionistic logic into modal
logic, which allowed to view intuitionistic logic as a
fragment of S4 (Lewis’ fourth system).
Stone and Tarski gave a topological representation of
algebras associated with intuitionistic logic.
This resulted in Tarski’s topological interpretation of
intuitionistic logic.

1940’s:

McKinsey and Tarski introduced closure algebras as an
algebraic language for topological spaces.
They proved that every closure algebra can be represented
as a subalgebra of the powerset algebra equipped with
topological closure.
This resulted in topological interpretation of modal logic.
As a consequence of the two representation theorems, they
proved that Gödel’s translation is full and faithful.
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Alexandroff way:

X a topological space 7→ Ω(X) = the algebra of all opens of X.

Kuratowski way:

X 7→ (℘(X), cl) = the powerset algebra equipped with
topological closure.

The two are closely related: Ω(X) is the fixpoints of the interior
operator int on ℘(X), which is dual to cl.
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Closure algebras

McKinsey-Tarski (1944):

A closure algebra is a pair (B, c), where B is a Boolean algebra
and c : B→ B satisfies Kuratowski’s axioms:

1 c0 = 0
2 a 6 ca
3 cca 6 ca
4 c(a ∨ b) = ca ∨ cb

Let i : B→ B be the interior operator dual to c; that is,
ia = −c− a.

Then H := {ia : a ∈ B} is a Heyting algebra.

Heyting algebra = bounded distributive lattice in which ∧ has
residual→:

a ∧ x 6 b iff x 6 a→ b
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Representation

Thus, the open elements of a closure algebra form a Heyting
algebra. Is every Heyting algebra represented this way?

The answer is yes, and this is at the heart of seeing that the
Gödel translation is full and faithful.

To see this, it is convenient to first discuss representation of
closure algebras and Heyting algebras. These representations
generalize the celebrated Stone representation of Boolean
algebras.
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Gödel translation is full and faithful.

To see this, it is convenient to first discuss representation of
closure algebras and Heyting algebras. These representations
generalize the celebrated Stone representation of Boolean
algebras.



Stone representation of Boolean algebras

For a Boolean algebra B, let X := uf(B) be the ultrafilters of B.
Define β : B→ ℘(X) by

β(a) = {x ∈ X | a ∈ x}

Then β : B→ ℘(B) is a Boolean embedding.

Moreover, {β(a) | a ∈ B} is a basis of a Stone topology (compact
Hausdorff zero-dimensional topology) on X.

Furthermore, B is isomorphic to the Boolean algebra of clopens
(= closed and open sets) of this topology.
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McKinsey-Tarski topology

McKinsey and Tarski weakened the Stone topology by
weakening the basis to

{β(ia) | a ∈ B}

We call the weaker topology the McKinsey-Tarski topology.

Key Lemma: β(ia) = intβ(a) where int is the interior in the
McKinsey-Tarski topology.

McKinsey-Tarski representation: Every closure algebra can be
represented as a subalgebra of the closure algebra (℘(X), cl) for
some topological space X.
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Stone-Tarski representation for Heyting algebras

For a Heyting algebra H, let X := pf(H) be the prime filters of H.
Define γ : H → Ω(X) by

γ(a) = {x ∈ X | a ∈ x}

Then γ is a Heyting embedding.

Moreover, {γ(a) | a ∈ H} is a basis of a spectral topology
(compact sober coherent topology) on X.

Furthermore, H is isomorphic to the Heyting algebra of compact
opens of this topology.

Consequently, every Heyting algebra can be represented as a
subalgebra of the Heyting algebra of opens of some topological
space.
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We can now see that each Heyting algebra can be realized as the
opens of a closure algebra.
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theorem, represent H as a subalgebra of the opens Ω(X) of a
topological space X. Then Ω(X) is the open elements of the
closure algebra (℘(X), cl). Let (B, c) be the subalgebra of
(℘(X), cl) generated by H. Then H is precisely the opens of
(B, c).
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Gödel translation

Gödel’s translation of the intuitionistic language IL into the
modal languageML associates with each formula ϕ of IL the
formula ϕt ofML obtained by prefixing � to each subformula
of ϕ.

Intuition: Think of ϕ as an element of the Lindenbaum algebra
H of intuitionistic logic. Since H is a Heyting algebra, each
element of H can be thought of as an open element of an
appropriate closure algebra (B, c). Thus, ϕ gets interpreted in
(B, c) as ϕt.

Gödel-McKinsey-Tarski Theorem: IPC ` ϕ iff S4 ` ϕt.
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McKinsey-Tarski completeness

Every non-theorem of S4 can be refuted in the closure algebra
of the real line, and every non-theorem of IPC can be refuted in
the Heyting algebra of opens of the real line.

More generally, the real line can be replaced by an arbitrary
crowded separable metric space (for example, an Euclidean
space, the rational line, or Cantor’s discontinuum).

Rasiowa and Sikorski showed that separable can be dropped
from the assumptions.
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Jónsson-Tarski-Kripke representation

Let (B, c) be a closure algebra, H be the Heyting algebra of open
elements, and X be the set of ultrafilters of (B, c). Define a
binary relation R on X by

xRy iff x ∩ H ⊆ y

Then R is a preorder (reflexive and transitive), and it is a partial
order iff B is generated as a Boolean algebra by H.

Since R is a preorder, it gives rise to the Alexandroff topology τR
on X, where the closure of U ⊆ X is given by

R−1[U] = {x ∈ X | ∃u ∈ U with xRu}

Key Lemma: β(ca) = R−1[β(a)].

Jónsson-Tarski (1951), Kripke (1963): Every closure algebra
can be represented as a subalgebra of the closure algebra
(℘(X),R−1) for some preordered set (X,R).
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The three topologies

We have three topologies on the set of ultrafilters X of a closure
algebra (B, c):

1 The Stone topology τS with clopen basis {β(a) | a ∈ B}.
2 The McKinsey-Tarski topology τMT with open basis
{β(ia) | a ∈ B}.

3 The Alexandroff topology τR of the preorder R.

Theorem:
1 τMT = τS ∩ τR.
2 R is the specialization preorder of τMT (that is, xRy iff x

belongs to the McKinsey-Tarski closure of y).
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Dummett-Lemmon (1959): The correspondence IPC→ S4 can
be extended to extensions of IPC and S4.
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The logic M is referred to as a modal companion of L.
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Grzegorczyk logic

In 1968 Grzegorczyk introduced a new modal companion of
IPC, which turned out to be of fundamental importance.

S4 is the logic of all closure algebras.

The Grzegorczyk logic Grz is the logic of those closure
algebras (B, c) in which B is generated as a Boolean algebra
by the Heyting algebra H of open elements of (B, c).

Esakia (1976): Grz is the largest modal companion of IPC.
Therefore, an extension M of S4 is a modal companion of IPC iff
S4 ⊆ M ⊆ Grz.

The Blok-Esakia theorem (1976): The lattice of extensions of
IPC is isomorphic to the lattice of extensions of Grz.
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Further directions

One of the consequences of the McKinsey-Tarski completeness
theorem is that many important properties of topological spaces
are not expressible in the language of closure algebras.

For example, we cannot tell apart the real line from Cantor’s
discontinuum or Euclidean spaces of dimension > 1.

One option to increase expressivity is to work with derivative
instead of closure.

x ∈ cl(A) iff Ux ∩ A 6= ∅ for every open neighborhood Ux of x.

x ∈ d(A) iff (Ux \ {x}) ∩ A 6= ∅ for every open neighborhood Ux.

cl(A) = A ∪ d(A)
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Derivational logics

Working with derivative yields the concept of a derivative
algebra (B,d).

The correspondence between Heyting algebras and closure
algebras can be extended to include derivative algebras by
setting ca = a ∨ da.

The logic of derivative algebras is the weak K4.

wK4 is the logic of all topological spaces when ♦ is
interpreted as derivative.

K4 is the logic of all Td-spaces (the derivative of a set is
closed).

Derivational logics can express the T0-separation axiom,
but cannot express higher separation axioms.
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Derivational logics

Derivational logics can distinguish between the real line,
Cantor’s discontinuum, and Euclidean spaces of dimension
> 1. But they cannot distinguish between Rn and Rm for
n,m > 1.

Gödel’s celebrated incompleteness theorem is expressible in
derivational logic (¬�⊥ → ¬�¬�⊥).

The Gödel-Löb logic is the logic of scattered spaces.

The expressive power can be increased further by adding the
universal modality. This, for example, allows to express whether
a space is connected. But there are other topological properties
(for example, being Hausdorff, that it cannot express).

The expressive power can be further extended by introducing
nominals. But this may lead to undecidability of our system.
One direction of current research is to seek a good balance
between expressive power and decidability of a modal system.
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Back to the McKinsey-Tarski completeness

A closer analysis of the McKinsey-Tarski theorem shows that to
refute non-theorems of S4 it is sufficient to work with Borel sets
on the real line. Therefore, S4 is the logic of the closure algebra
(Bor(R), cl). This yields the following natural question:

Which extensions of S4 can be picked up as logics of
subalgebras of the closure algebra (℘(R), cl)? Of course, instead
of the real line, we can consider any space for which the
McKinsey-Tarski theorem is applicable.

Surprisingly, this question has a positive solution. For example,
we can pick up every extension of S4 from subalgebras of the
closure algebra of Cantor’s discontinuum! This is no longer so if
we work with the real line (connectedness gets in the way).
Nevertheless, it is possible to describe the logics that arise as
logics of subalgebras of the closure algebra of the real line.
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logics of subalgebras of the closure algebra of the real line.
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Measure-theoretic interpretation

The Lebesgue measure algebraM is obtained from Bor(R) by
modding out Borel sets of measure zero.

Lando-Scott (2010): There is a closure operator c onM such
that (M, c) is a closure algebra and S4 is the logic of (M, c).

New results in measure-theoretic interpretation of modal logic
are being proved as we speak!
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First-order logics

The Gödel translation of IPC into S4 extends to the predicate
case. However, it remains an open problem whether there is a
predicate analogue of the Blok-Esakia theorem.

One of the difficulties is the lack of adequate semantics in the
predicate case. While both first-order intuitionistic logic and
first-order S4 are complete (algebraically, topologically, or
relationally), this is no longer true for many extensions of these
logics. Thus, it is desirable to obtain a workable adequate
semantics of these systems. Some attempts in this direction
include sheaf semantics, and more generally, bundle semantics.

We do have an adequate semantics for one-variable fragments
of these systems by means of monadic Heyting algebras and
monadic modal algebras. But in its general form, the
Blok-Esakia theorem remains unsolved even for these weaker
systems (some partial results in this direction are available).



First-order logics
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