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Vision of Leibniz (1646–1716): Calculemus!

If controversies were to arise, there
would be no more need of disputa-
tion between two philosophers than be-
tween two accountants. For it would
suffice to take their pencils in their
hands, to sit down to their slates, and
to say to each other . . . : Let us calcu-
late.

(Translation by Russell)

Quo facto, quando orientur controversiae, non magis dispu-
tatione opus erit inter duos philosophos, quam inter duos
Computistas. Sufficiet enim calamos in manus sumere
sedereque ad abacos, et sibi mutuo . . . dicere: calculemus.
(Leibniz, 1684)

Required:
characteristica universalis and calculus ratiocinator
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Talk Outline

A: HOL as a Universal (Meta-)Logic via Semantic Embeddings

B: New Knowledge on the Ontological Argument from HOL ATPs

C: Reconstruction of the Inconsistency of Gödel’s Axioms

D: Recent Technical Improvements

(E: Other Related Work: Zalta’a Theory of Abstract Object)

(F: Other Related Work: Scott’s Free Logic)
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Germany
- Telepolis & Heise
- Spiegel Online
- FAZ
- Die Welt
- Berliner Morgenpost
- Hamburger Abendpost
- . . .

Austria
- Die Presse
- Wiener Zeitung
- ORF
- . . .

Italy
- Repubblica
- Ilsussidario
- . . .

India
- DNA India
- Delhi Daily News
- India Today
- . . .

US
- ABC News
- . . .

International
- Spiegel International
- Yahoo Finance
- United Press Intl.
- . . .
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See more serious and funny news links at
https://github.com/FormalTheology/GoedelGod/blob/master/Press/LinksToNews.md
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Part A:
HOL as a Universal (Meta-)Logic via Semantic Embeddings
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HOL as a Universal (Meta-)Logic via Semantic Embeddings

HOL

Logic L
Syntax

Logic L
Semantics

Examples for L we have already studied:
Modal Logics, Conditional Logics, Intuitionistic Logics, Access Control Logics, Nominal
Logics, Multivalued Logics (SIXTEEN), Logics based on Neighborhood Semantics,
(Mathematical) Fuzzy Logics, Paraconsistent Logics, . . .

Works also for (first-order & higher-order) quantifiers
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Embedding Approach — Idea

HOL (meta-logic) ϕ ::=

Your-logic (object-logic) ψ ::=

Embedding of in

=

=

=

=

Embedding of meta-logical notions on in

valid =

satisfiable =

... =

Pass this set of equations to a higher-order automated theorem prover
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Classical Higher-Order Logic (HOL)

Simple Types α ::= o | ι | µ | α1 � α2

HOL s, t ::= cα | xα | (λxαsβ)α�β | (sα�β tα)β |
(¬o�o so)o | (so ∨o�o�o to)o | (∀(α�o)�o(λxαto))o

(note: binder notation ∀xαto as syntactic sugar for ∀(α�o)�o(λxαto))

HOL with Henkin semantics is (meanwhile) well understood
Origin [Church,JSymbLog,1940]

Henkin semantics [Henkin,JSymb.Log,1950]

[Andrews, JSymbLog,1971,1972]

Extens./Intens. [BenzmüllerEtAl,JSymbLog,2004]

[Muskens,JSymbLog,2007]

Sound and complete provers do exists

interactive: Isabelle/HOL, PVS, HOL4, Hol Light, Coq/HOL, . . .

automated: TPS, LEO-II, Satallax, Nitpick, Isabelle/HOL, . . .
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Embedding HOML in HOL

HOML ϕ, ψ ::= . . . | ¬ϕ | ϕ ∧ ψ | ϕ→ ψ | �ϕ | ^ϕ | ∀xγ ϕ | ∃xγ ϕ

I Kripke style semantics (possible world semantics)
M, g, s |= ¬ϕ iff not M, g, s |= ϕ
M, g, s |= ϕ ∧ ψ iff M, g, s |= ϕ and M, g, s |= ψ
. . .
M, g, s |= �ϕ iff M, g, u |= ϕ for all u with r(s, u)
. . .
M, g, s |= ∀xγ ϕ iff M, [d/x]g, s |= ϕ for all d ∈ Dγ

. . .

[BenzmüllerWoltzenlogelPaleo, ECAI, 2014]

[Muskens, HandbookOfModalLogic, 2006]
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Embedding Approach — HOML in HOL (remember my talk at SRI in 2010!)

HOL s, t ::= cα | xα | (λxαsβ)α�β | (sα�β tα)β | ¬so | so ∨ to | ∀xα to

HOML ϕ, ψ ::= . . . | ¬ϕ | ϕ ∧ ψ | ϕ→ ψ | �ϕ | ^ϕ | ∀xγ ϕ | ∃xγ ϕ

HOML in HOL: HOML formulas ϕ are mapped to HOL predicates ϕµ�o

(explicit representation of labelled formulas)

¬ = λϕµ�oλwµ¬ϕw
∧ = λϕµ�oλψµ�oλwµ(ϕw ∧ ψw)
→ = λϕµ�oλψµ�oλwµ(¬ϕw ∨ ψw)

∀ = λhγ�(µ�o)λwµ∀dγ hdw
∃ = λhγ�(µ�o)λwµ∃dγ hdw

� = λϕµ�oλwµ∀uµ (¬rwu ∨ ϕu)
^ = λϕµ�oλwµ∃uµ (rwu ∧ ϕu)

valid = λϕµ�o∀wµϕw

Ax (polymorphic over γ)

The equations in Ax are given as axioms to the HOL provers!
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Embedding HOML in HOL

Example

HOML formula ^∃xG(x)
HOML formula in HOL valid (^∃xG(x))µ�o

expansion (λϕ∀wµϕw)(^∃xG(x))µ�o

βη-normalisation ∀wµ((^∃xG(x))µ�o w)
expansion ∀wµ(((λϕµ�oλwµ∃uµ (rwu ∧ ϕu))∃xG(x))µ�o w)
βη-normalisation ∀wµ∃uµ(rwu ∧ (∃xG(x))µ�ou)
syntactic sugar ∀wµ∃uµ(rwu ∧ (∃(λxG(x)))µ�ou)
expansion ∀wµ∃uµ(rwu ∧ ((λhγ�(µ�o)λwµ∃dγ hdw)(λxG(x)))µ�ou)
βη-normalisation ∀wµ∃uµ(rwu ∧ ∃xGxu)

Expansion: user or prover may flexibly choose expansion depth

What are we doing?

In order to prove that ϕ is valid in HOML,
–> we instead prove that validϕµ�o can be derived from Ax in HOL.

This can be done with interactive or automated HOL theorem provers.
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In order to prove that ϕ is valid in HOML,
–> we instead prove that validϕµ�o can be derived from Ax in HOL.

This can be done with interactive or automated HOL theorem provers.
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Advantages of the Embedding Approach

1. Pragmatics and convenience:
I implementing new provers made simple (even for not yet automated logics)

2. Availability:
I simply reuse and adapt our existing encodings (THF, Isabelle/HOL, Coq)

3. Flexibility:
I rapid experimentation with logic variations and logic combinations

4. Relation to labelled deductive systems:
I extra-logical labels vs. intra-logical labels (here)

5. Relation to standard translation:
I extra-logical translation vs. extended intra-logical translation (here)

6. Meta-logical reasoning:
I various examples already exist, e.g. verification of modal logic cube

7. Direct calculi and user intuition:
I possible: tactics on top of embedding, hiding of embedding

8. Soundness and completeness:
I already proven for many non-classical logics (wrt Henkin semantics)

9. Cut-elimination:
I generic indirect result, since HOL enjoys cut-elimination (Henkin semantics)
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Advantage: 1. Pragmatics and convenience
implementing new provers made simple (even for not yet automated logics)

A very “Lean” Prover for HOML K
1 %----The base type $i (already built-in) stands here for worlds and
2 %----mu for individuals; $o (also built-in) is the type of Booleans
3 thf(mu_type,type,(mu:$tType)).
4 %----Reserved constant r for accessibility relation
5 thf(r,type,(r:$i>$i>$o)).
6 %----Modal logic operators not, or, and, implies, box, diamond
7 thf(mnot_type,type,(mnot:($i>$o)>$i>$o)).
8 thf(mnot,definition,(mnot = (^[A:$i>$o,W:$i]:~(A@W)))).
9 thf(mor_type,type,(mor:($i>$o)>($i>$o)>$i>$o)).

10 thf(mor,definition,(mor = (^[A:$i>$o,Psi:$i>$o,W:$i]:((A@W)|(Psi@W))))).
11 thf(mand_type,type,(mand:($i>$o)>($i>$o)>$i>$o)).
12 thf(mand,definition,(mand = (^[A:$i>$o,Psi:$i>$o,W:$i]:((A@W)&(Psi@W))))).
13 thf(mimplies_type,type,(mimplies:($i>$o)>($i>$o)>$i>$o)).
14 thf(mimplies,definition,(mimplies = (^[A:$i>$o,Psi:$i>$o,W:$i]:((A@W)&(Psi@W))))).
15 thf(mbox_type,type,(mbox:($i>$o)>$i>$o)).
16 thf(mbox,definition,(mbox = (^[A:$i>$o,W:$i]:![V:$i]:(~(r@W@V)|(A@V))))).
17 thf(mdia_type,type,(mdia:($i>$o)>$i>$o)).
18 thf(mdia,definition,(mdia = (^[A:$i>$o,W:$i]:?[V:$i]:((r@W@V)&(A@V))))).
19 %----Quantifiers (constant domains) for individuals and propositions
20 thf(mforall_ind_type,type,(mforall_ind:(mu>$i>$o)>$i>$o)).
21 thf(mforall_ind,definition,(mforall_ind = (^[A:mu>$i>$o,W:$i]:![X:mu]:(A@X@W)))).
22 thf(mforall_indset_type,type,(mforall_indset:((mu>$i>$o)>$i>$o)>$i>$o)).
23 thf(mforall_indset,definition,(mforall_indset = (^[A:(mu>$i>$o)>$i>$o,W:$i]:![X:mu>$i>$o]:(A@X@W)))).
24 thf(mexists_ind_type,type,(mexists_ind:(mu>$i>$o)>$i>$o)).
25 thf(mexists_ind,definition,(mexists_ind = (^[A:mu>$i>$o,W:$i]:?[X:mu]:(A@X@W)))).
26 thf(mexists_indset_type,type,(mexists_indset:((mu>$i>$o)>$i>$o)>$i>$o)).
27 thf(mexists_indset,definition,(mexists_indset = (^[A:(mu>$i>$o)>$i>$o,W:$i]:?[X:mu>$i>$o]:(A@X@W)))).
28 %----Definition of validity (grounding of lifted modal formulas)
29 thf(v_type,type,(v:($i>$o)>$o)).
30 thf(mvalid,definition,(v = (^[A:$i>$o]:![W:$i]:(A@W)))).

TPTP THF0 syntax: [SutcliffeBenzmüller, J.Formalized Reasoning, 2010]
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Advantage: 1. Pragmatics and convenience
implementing new provers made simple (even for not yet automated logics)

Approach is competitive

I First-order modal logic: see experiments in
[BenzmüllerOttenRaths, ECAI, 2012]

[BenzmüllerRaths, LPAR, 2013]
[Benzmüller, ARQNL, 2014]

I Higher-order modal logics:

There are no other systems yet!
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Advantage: 2. Availability
simply reuse and adapt our existing encodings (THF, Isabelle/HOL, Coq)

HOML in Isabelle/HOL

See formalisations at https://github.com/FormalTheology/GoedelGod/tree/master/Formalizations
C. Benzmüller, 2016 —– A Success Story of Higher-Order (Automated) Theorem Proving in Computational Metaphysics 15
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Advantage: 3. Flexibility
rapid experimentation with logic variations and logic combinations

Postulating modal axioms or semantical constraints

HOL

’Syntactical’ Sahlqvist axioms ’Semantical’ constraints
M: valid ∀ϕ(�rϕ→ ϕ) ↔ ∀x(rxx) (reflexivity)
B: valid ∀ϕ(ϕ→ �r^rϕ) ↔ ∀x∀y(rxy→ ryx) (symmetry)
D: valid ∀ϕ(�rϕ→ ^rϕ) ↔ ∀x∃y(rxy) (serial)
4: valid ∀ϕ(�rϕ→ �r�rϕ) ↔ ∀x∀y∀z(rxy ∧ ryz→ rxz) (transitivity)
5: valid ∀ϕ(^rϕ→ �r^rϕ) ↔ ∀x∀y∀z(rxy ∧ rxz→ ryz) (euclidean)
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Advantage: 3. Flexibility
rapid experimentation with logic variations and logic combinations

Possibilist vs. Actualist Quantification

∀ = λhγ�(µ�o)λwµ∀dγ hdw (constant domains)
becomes
∀va = λhγ�(µ�o)λwµ∀dγ (ExInW dw→ hdw) (varying domains)

where ExInW is an existence predicate
(additional axioms: non-empty domains, denotation of constants & functions)
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Advantage: 4. Relation to labelled deductive systems
extra-logical labels vs. intra-logical labels (here)

^∃xG(x) worldlabel −→ ((^∃xG(x))µ�o worldlabelµ)
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Advantage: 5. Relation to standard translation
extra-logical translation vs. extended intra-logical translation (here)

[BenzmüllerPaulson, LogicaUniversalis, 2013]
[BenzmüllerWoltzenlogelPaleo, ECAI, 2014]

Intra-logical realisation of the standard translation

(�φ) a

−→ ((�φ)µ�o a)
−→ (((λϕµ�oλwµ∀uµ (¬rwu ∨ ϕu)) φ)µ�o a)
−→ (∀uµ (¬rau ∨ φµ�o u)

We have extended this also for first-order and higher-order quantifiers!

(∀x φ(x)) a

−→ ((∀x φ(x))µ�o a)
−→ ((∀(λx φ(x)))µ�o a)
−→ (((λhγ�(µ�o)λwµ∀dγ hdw)(λx φ(x)))µ�o a)
−→ ∀d (φ(d)µ�o a)
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Advantage: 6. Meta-logical reasoning
various examples already exist, e.g. verification of modal logic cube

[Benzmüller, FestschriftWalther, 2010]
[BenzmüllerClausSultana, PxTP, 2015]

K

K4

K5

KB

K45 KB5

D

D4

D5

DB

D45

M

S4

BB

S5 ≡ M5 ≡ MB5 ≡ M4B5
≡ M45 ≡ M4B ≡ D4B
≡ D4B5 ≡ DB5

M: �P→ P
B: P→ �^P
D: �P→ ^P
4: �P→ ��P
5: ^P→ �^P

K

M

4
5

B

≡ K4B5 ≡ K4B

Verification of cube in less than 1 minute in Isabelle/HOL
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Advantage: 7. Direct calculi and user intuition
abstract level tactics (here in Coq) on top of embedding, hiding of embedding

[BenzmüllerWoltzenlogelPaleo, CSR’2015]
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Advantage: 8. Soundness and completeness
already proven for many non-classical logics (wrt Henkin semantics)

Soundness and Completeness
|=L ϕ iff Ax |=HOL

Henkin valid ϕµ�o

Logic L:
I Higher-order Modal Logics [BenzmüllerWoltzenlogelPaleo, ECAI, 2014]

I First-order Multimodal Logics [BenzmüllerPaulson, LogicaUniversalis, 2013]

I Propositional Multimodal Logics [BenzmüllerPaulson, Log.J.IGPL, 2010]

I Quantified Conditional Logics [Benzmüller, IJCAI, 2013]

I Propositional Conditional Logics [BenzmüllerEtAl., AMAI, 2012]

I Intuitionistic Logics [BenzmüllerPaulson, Log.J.IGPL, 2010]

I Access Control Logics [Benzmüller, IFIP SEC, 2009]

I Logic Combinations [Benzmüller, AMAI, 2011]
I . . . more is on the way . . . including:

I Description Logics
I Nominal Logics
I Multivalued Logics (SIXTEEN)
I Logics based on Neighborhood Semantics
I (Mathematical) Fuzzy Logics
I Paraconsistent Logics
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Advantage: 9. Cut-elimination
generic indirect result, since HOL enjoys cut-elimination (Henkin semantics)
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Soundness and Completeness and Cut-elimination
|=L ϕ iff Ax |=HOL
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Part B:
New Knowledge on the Ontological Argument

from HOL ATPs

C. Benzmüller, 2016 —– A Success Story of Higher-Order (Automated) Theorem Proving in Computational Metaphysics 23



Vision of Leibniz (1646–1716): Calculemus!

If controversies were to arise, there
would be no more need of disputa-
tion between two philosophers than be-
tween two accountants. For it would
suffice to take their pencils in their
hands, to sit down to their slates, and
to say to each other . . . : Let us calcu-
late.

(Translation by Russell)

Quo facto, quando orientur controversiae, non magis dispu-
tatione opus erit inter duos philosophos, quam inter duos
Computistas. Sufficiet enim calamos in manus sumere
sedereque ad abacos, et sibi mutuo . . . dicere: calculemus.
(Leibniz, 1684)

Required:
characteristica universalis and calculus ratiocinator
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Our Contribution: Towards Computational Metaphysics

Ontological argument for the existence of God

I Focus on Gödel’s modern version in higher-order modal logic

I Experiments with HO provers and embedding approach

Different interests in ontological arguments

I Philosophical: Boundaries of metaphysics & epistemology

I Theistic: Successful argument could convince atheists?

I Ours: Computational metaphysics (Leibniz’ vision)

Related work: only for Anselm’s simpler argument

I first-order ATP PROVER9 [OppenheimerZalta, 2011]

I interactive proof assistant PVS [Rushby, 2013]
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Anselm’s notion of God (Proslogion, 1078):
“God is that, than which nothing greater can be conceived.”

Gödel’s notion of God:
“A God-like being possesses all ‘positive’ properties.”

To show by logical, deductive reasoning:
“God exists.”

∃xG(x)
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Anselm’s notion of God (Proslogion, 1078):
“God is that, than which nothing greater can be conceived.”

Gödel’s notion of God:
“A God-like being possesses all ‘positive’ properties.”

To show by logical, deductive reasoning:
“Necessarily, God exists.”

�∃xG(x)
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Gödel’s Manuscript: 1930’s, 1941, 1946-1955, 1970
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Scott’s Version of Gödel’s Axioms, Definitions and Theorems

Axiom A1 Either a property or its negation is positive, but not both: ∀φ[P(¬φ)↔ ¬P(φ)]

Axiom A2 A property necessarily implied by a positive property is positive:
∀φ∀ψ[(P(φ) ∧ �∀x[φ(x)→ ψ(x)])→ P(ψ)]

Thm. T1 Positive properties are possibly exemplified: ∀φ[P(φ)→ ^∃xφ(x)]

Def. D1 A God-like being possesses all positive properties: G(x)↔ ∀φ[P(φ)→ φ(x)]

Axiom A3 The property of being God-like is positive: P(G)

Cor. C Possibly, God exists: ^∃xG(x)

Axiom A4 Positive properties are necessarily positive: ∀φ[P(φ)→ �P(φ)]

Def. D2 An essence of an individual is a property possessed by it and necessarily implying
any of its properties: φ ess. x↔ φ(x) ∧ ∀ψ(ψ(x)→ �∀y(φ(y)→ ψ(y)))

Thm. T2 Being God-like is an essence of any God-like being: ∀x[G(x)→ G ess. x]

Def. D3 Necessary existence of an individual is the necessary exemplification of all its
essences: NE(x)↔ ∀φ[φ ess. x→ �∃yφ(y)]

Axiom A5 Necessary existence is a positive property: P(NE)

Thm. T3 Necessarily, God exists: �∃xG(x)
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Scott’s Version of Gödel’s Axioms, Definitions and Theorems
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Def. D1 A God-like being possesses all positive properties: G(x)↔ ∀φ[P(φ)→ φ(x)]

Axiom A3 The property of being God-like is positive: P(G)

Cor. C Possibly, God exists: ^∃xG(x)

Axiom A4 Positive properties are necessarily positive: ∀φ[P(φ)→ �P(φ)]

Def. D2 An essence of an individual is a property possessed by it and necessarily implying
any of its properties: φ ess. x↔ φ(x) ∧ ∀ψ(ψ(x)→ �∀y(φ(y)→ ψ(y)))

Thm. T2 Being God-like is an essence of any God-like being: ∀x[G(x)→ G ess. x]

Def. D3 Necessary existence of an individual is the necessary exemplification of all its
essences: NE(x)↔ ∀φ[φ ess. x→ �∃yφ(y)]

Axiom A5 Necessary existence is a positive property: P(NE)

Thm. T3 Necessarily, God exists: �∃xG(x)

Difference to Gödel (who omits this conjunct)
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Scott’s Version of Gödel’s Axioms, Definitions and Theorems

Axiom A1 Either a property or its negation is positive, but not both: ∀φ[P(¬φ)↔ ¬P(φ)]

Axiom A2 A property necessarily implied by a positive property is positive:
∀φ∀ψ[(P(φ) ∧ �∀x[φ(x)→ ψ(x)])→ P(ψ)]

Thm. T1 Positive properties are possibly exemplified: ∀φ[P(φ)→ ^∃xφ(x)]

Def. D1 A God-like being possesses all positive properties: G(x)↔ ∀φ[P(φ)→ φ(x)]

Axiom A3 The property of being God-like is positive: P(G)

Cor. C Possibly, God exists: ^∃xG(x)

Axiom A4 Positive properties are necessarily positive: ∀φ[P(φ)→ �P(φ)]

Def. D2 An essence of an individual is a property possessed by it and necessarily implying
any of its properties: φ ess. x↔ φ(x) ∧ ∀ψ(ψ(x)→ �∀y(φ(y)→ ψ(y)))

Thm. T2 Being God-like is an essence of any God-like being: ∀x[G(x)→ G ess. x]

Def. D3 Necessary existence of an individual is the necessary exemplification of all its
essences: NE(x)↔ ∀φ[φ ess. x→ �∃yφ(y)]

Axiom A5 Necessary existence is a positive property: P(NE)

Thm. T3 Necessarily, God exists: �∃xG(x)

Modal operators are used
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Scott’s Version of Gödel’s Axioms, Definitions and Theorems
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Def. D3 Necessary existence of an individual is the necessary exemplification of all its
essences: NE(x)↔ ∀φ[φ ess. x→ �∃yφ(y)]

Axiom A5 Necessary existence is a positive property: P(NE)

Thm. T3 Necessarily, God exists: �∃xG(x)

second-order quantifiers
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Gödel’s God in TPTP THF
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Gödel’s God in Isabelle/HOL

See verifiable Isabelle/HOL document (Archive of Formal Proofs) at:
http://afp.sourceforge.net/entries/GoedelGod.shtml
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Gödel’s God in Coq

See verifiable Coq document at:
https://github.com/FormalTheology/GoedelGod/tree/master/Formalizations/Coq
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Findings from our study
[BenzmüllerWoltzenlogelPaleo, ECAI, 2014]
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Main Findings [BenzmüllerWoltzenlogelPaleo, ECAI, 2014]
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Main Findings [BenzmüllerWoltzenlogelPaleo, ECAI, 2014]

Automating Scott’s proof script

T1: "Positive properties are possibly exemplified"
proved by LEO-II and Satallax
I in logic: K
I from assumptions:

I A1 and A2
I A1(⊃) and A2

I notion of quantification
I possibilist quantifiers (constant dom.)
I actualist quantifiers for individuals (varying dom.)
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Main Findings [BenzmüllerWoltzenlogelPaleo, ECAI, 2014]

Automating Scott’s proof script

C: "Possibly, God exists”
proved by LEO-II and Satallax
I in logic: K
I from assumptions:

I T1, D1, A3
I for domain conditions:

I possibilist quantifiers (constant dom.)
I actualist quantifiers for individuals (varying dom.)
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Main Findings [BenzmüllerWoltzenlogelPaleo, ECAI, 2014]

Automating Scott’s proof script

T2: "Being God-like is an ess. of any God-like being”
proved by LEO-II and Satallax
I in logic: K
I from assumptions:

I A1, D1, A4, D2
I for domain conditions:

I possibilist quantifiers (constant dom.)
I actualist quantifiers for individuals (varying dom.)
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Main Findings [BenzmüllerWoltzenlogelPaleo, ECAI, 2014]

Automating Scott’s proof script

T3: "Necessarily, God exists”
proved by LEO-II and Satallax
I in logic: KB
I from assumptions:

I D1, C, T2, D3, A5
I for domain conditions:

I possibilist quantifiers (constant dom.)
I actualist quantifiers for individuals (varying dom.)

For logic K we got a countermodel by Nitpick
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Main Findings [BenzmüllerWoltzenlogelPaleo, ECAI, 2014]

Automating Scott’s proof script

Summary
I proof verified and automated
I KB is sufficient (critisized logic S5 not needed!)
I possibilist and actualist quantifiers (individuals)
I exact dependencies determined experimentally
I ATPs have found alternative proofs

e.g. self-identity λx(x = x) is not needed
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Main Findings [BenzmüllerWoltzenlogelPaleo, ECAI, 2014]

Consistency check: Gödel vs. Scott

I Scott’s assumptions are consistent;
shown by Nitpick

I Gödel’s assumptions are inconsistent;
shown by LEO-II (new philosophical result?)
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Main Findings [BenzmüllerWoltzenlogelPaleo, ECAI, 2014]

Further Results

I Monotheism holds
I God is flawless

C. Benzmüller, 2016 —– A Success Story of Higher-Order (Automated) Theorem Proving in Computational Metaphysics 44



Main Findings [BenzmüllerWoltzenlogelPaleo, ECAI, 2014]

Modal Collapse (Sobel)

∀ϕ(ϕ ⊃ �ϕ)

I proved by LEO-II and Satallax
I for possibilist and actualist quantification (ind.)

Main critique on Gödel’s ontological proof:
I there are no contingent truths
I everything is determined / no free will
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Main Findings [BenzmüllerWoltzenlogelPaleo, ECAI, 2014]

Observation

I good performance of ATPs
I excellent match between

argumentation granularity in
papers and the reasoning strength
of the ATPs

C. Benzmüller, 2016 —– A Success Story of Higher-Order (Automated) Theorem Proving in Computational Metaphysics 46



Avoiding the Modal Collapse: Recent Variants
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Avoiding the Modal Collapse: Some Emendations

Computer-supported Clarification of Controversy
1st World Congress on Logic and Religion, 2015
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Results Obtained with Fully Automated Reasoners
A controversy between Magari, Hájek and Anderson regarding the redundancy of some axioms

Leibniz (1646–1716)

characteristica universalis and calculus ratiocinator
If controversies were to arise, there would be no more need of disputation between two
philosophers than between two accountants. For it would suffice to take their pencils in
their hands, to sit down to their slates, and to say to each other . . . : Let us calculate.

But: Intuitive proofs/models are needed to convince philosophers
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Part C:
Reconstruction of the Inconsistency of Gödel’s Axioms
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Scott’s Version of Gödel’s Axioms, Definitions and Theorems

Axiom A1 Either a property or its negation is positive, but not both: ∀φ[P(¬φ)↔ ¬P(φ)]

Axiom A2 A property necessarily implied by a positive property is positive:
∀φ∀ψ[(P(φ) ∧ �∀x[φ(x)→ ψ(x)])→ P(ψ)]

Thm. T1 Positive properties are possibly exemplified: ∀φ[P(φ)→ ^∃xφ(x)]

Def. D1 A God-like being possesses all positive properties: G(x)↔ ∀φ[P(φ)→ φ(x)]

Axiom A3 The property of being God-like is positive: P(G)

Cor. C Possibly, God exists: ^∃xG(x)

Axiom A4 Positive properties are necessarily positive: ∀φ[P(φ)→ �P(φ)]

Def. D2 An essence of an individual is a property possessed by it and necessarily implying
any of its properties: φ ess. x↔ φ(x) ∧ ∀ψ(ψ(x)→ �∀y(φ(y)→ ψ(y)))

Thm. T2 Being God-like is an essence of any God-like being: ∀x[G(x)→ G ess. x]

Def. D3 Necessary existence of an individual is the necessary exemplification of all its
essences: NE(x)↔ ∀φ[φ ess. x→ �∃yφ(y)]

Axiom A5 Necessary existence is a positive property: P(NE)

Thm. T3 Necessarily, God exists: �∃xG(x)

��XX

Difference to Gödel (who omits this conjunct)
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Inconsistency (Gödel): Proof by LEO-II in KB
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Inconsistency (Gödel): Verification in Isabelle/HOL (KB)
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Inconsistency (Gödel): Verification in Isabelle/HOL (K)
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Inconsistency (Gödel): Informal Argument (in KB and K)

Def. D2∗ φ ess. x↔���XXXφ(x) ∧ ∀ψ(ψ(x)→ �∀y(φ(y)→ ψ(y)))

Lemma 1 The empty property is an essence of every entity. ∀x (∅ ess. x)

Theorem 1 Positive Properties are possibly exemplified. ∀φ[P(φ)→ ^∃xφ(x)]

Axiom A5 P(NE)
I by T1, A5: ^∃x[NE(x)]

Def. D3 NE(x)↔ ∀φ[φ ess. x→ �∃yφ(y)]
I ^∃x[∀φ[φ ess. x→ �∃y[φ(y)]]]
I ^∃x[∅ ess. x→ �∃y[∅(y)]]
I by L1 ^∃x[> → �∃y[∅(y)]]
I by def. of ∅ ^∃x[> → �⊥]
I ^∃x[�⊥]
I ^�⊥

Inconsistency ⊥

C. Benzmüller, 2016 —– A Success Story of Higher-Order (Automated) Theorem Proving in Computational Metaphysics 55



Inconsistency (Gödel): Informal Argument (in KB and K)

Def. D2∗ φ ess. x↔���XXXφ(x) ∧ ∀ψ(ψ(x)→ �∀y(φ(y)→ ψ(y)))

Lemma 1 The empty property is an essence of every entity. ∀x (∅ ess. x)

Theorem 1 Positive Properties are possibly exemplified. ∀φ[P(φ)→ ^∃xφ(x)]

Axiom A5 P(NE)
I by T1, A5: ^∃x[NE(x)]

Def. D3 NE(x)↔ ∀φ[φ ess. x→ �∃yφ(y)]
I ^∃x[∀φ[φ ess. x→ �∃y[φ(y)]]]
I ^∃x[∅ ess. x→ �∃y[∅(y)]]
I by L1 ^∃x[> → �∃y[∅(y)]]
I by def. of ∅ ^∃x[> → �⊥]
I ^∃x[�⊥]
I ^�⊥

Inconsistency ⊥

C. Benzmüller, 2016 —– A Success Story of Higher-Order (Automated) Theorem Proving in Computational Metaphysics 55



Inconsistency (Gödel): Informal Argument (in KB and K)

Def. D2∗ φ ess. x↔���XXXφ(x) ∧ ∀ψ(ψ(x)→ �∀y(φ(y)→ ψ(y)))

Lemma 1 The empty property is an essence of every entity. ∀x (∅ ess. x)

Theorem 1 Positive Properties are possibly exemplified. ∀φ[P(φ)→ ^∃xφ(x)]

Axiom A5 P(NE)
I by T1, A5: ^∃x[NE(x)]

Def. D3 NE(x)↔ ∀φ[φ ess. x→ �∃yφ(y)]
I ^∃x[∀φ[φ ess. x→ �∃y[φ(y)]]]
I ^∃x[∅ ess. x→ �∃y[∅(y)]]
I by L1 ^∃x[> → �∃y[∅(y)]]
I by def. of ∅ ^∃x[> → �⊥]
I ^∃x[�⊥]
I ^�⊥

Inconsistency ⊥

C. Benzmüller, 2016 —– A Success Story of Higher-Order (Automated) Theorem Proving in Computational Metaphysics 55



Inconsistency (Gödel): Informal Argument (in KB and K)

Def. D2∗ φ ess. x↔���XXXφ(x) ∧ ∀ψ(ψ(x)→ �∀y(φ(y)→ ψ(y)))

Lemma 1 The empty property is an essence of every entity. ∀x (∅ ess. x)

Theorem 1 Positive Properties are possibly exemplified. ∀φ[P(φ)→ ^∃xφ(x)]

Axiom A5 P(NE)

I by T1, A5: ^∃x[NE(x)]

Def. D3 NE(x)↔ ∀φ[φ ess. x→ �∃yφ(y)]
I ^∃x[∀φ[φ ess. x→ �∃y[φ(y)]]]
I ^∃x[∅ ess. x→ �∃y[∅(y)]]
I by L1 ^∃x[> → �∃y[∅(y)]]
I by def. of ∅ ^∃x[> → �⊥]
I ^∃x[�⊥]
I ^�⊥

Inconsistency ⊥

C. Benzmüller, 2016 —– A Success Story of Higher-Order (Automated) Theorem Proving in Computational Metaphysics 55



Inconsistency (Gödel): Informal Argument (in KB and K)

Def. D2∗ φ ess. x↔���XXXφ(x) ∧ ∀ψ(ψ(x)→ �∀y(φ(y)→ ψ(y)))

Lemma 1 The empty property is an essence of every entity. ∀x (∅ ess. x)

Theorem 1 Positive Properties are possibly exemplified. ∀φ[P(φ)→ ^∃xφ(x)]

Axiom A5 P(NE)
I by T1, A5: ^∃x[NE(x)]

Def. D3 NE(x)↔ ∀φ[φ ess. x→ �∃yφ(y)]
I ^∃x[∀φ[φ ess. x→ �∃y[φ(y)]]]
I ^∃x[∅ ess. x→ �∃y[∅(y)]]
I by L1 ^∃x[> → �∃y[∅(y)]]
I by def. of ∅ ^∃x[> → �⊥]
I ^∃x[�⊥]
I ^�⊥

Inconsistency ⊥

C. Benzmüller, 2016 —– A Success Story of Higher-Order (Automated) Theorem Proving in Computational Metaphysics 55



Inconsistency (Gödel): Informal Argument (in KB and K)

Def. D2∗ φ ess. x↔���XXXφ(x) ∧ ∀ψ(ψ(x)→ �∀y(φ(y)→ ψ(y)))

Lemma 1 The empty property is an essence of every entity. ∀x (∅ ess. x)

Theorem 1 Positive Properties are possibly exemplified. ∀φ[P(φ)→ ^∃xφ(x)]

Axiom A5 P(NE)
I by T1, A5: ^∃x[NE(x)]

Def. D3 NE(x)↔ ∀φ[φ ess. x→ �∃yφ(y)]

I ^∃x[∀φ[φ ess. x→ �∃y[φ(y)]]]
I ^∃x[∅ ess. x→ �∃y[∅(y)]]
I by L1 ^∃x[> → �∃y[∅(y)]]
I by def. of ∅ ^∃x[> → �⊥]
I ^∃x[�⊥]
I ^�⊥

Inconsistency ⊥

C. Benzmüller, 2016 —– A Success Story of Higher-Order (Automated) Theorem Proving in Computational Metaphysics 55



Inconsistency (Gödel): Informal Argument (in KB and K)

Def. D2∗ φ ess. x↔���XXXφ(x) ∧ ∀ψ(ψ(x)→ �∀y(φ(y)→ ψ(y)))

Lemma 1 The empty property is an essence of every entity. ∀x (∅ ess. x)

Theorem 1 Positive Properties are possibly exemplified. ∀φ[P(φ)→ ^∃xφ(x)]

Axiom A5 P(NE)
I by T1, A5: ^∃x[NE(x)]

Def. D3 NE(x)↔ ∀φ[φ ess. x→ �∃yφ(y)]
I ^∃x[∀φ[φ ess. x→ �∃y[φ(y)]]]

I ^∃x[∅ ess. x→ �∃y[∅(y)]]
I by L1 ^∃x[> → �∃y[∅(y)]]
I by def. of ∅ ^∃x[> → �⊥]
I ^∃x[�⊥]
I ^�⊥

Inconsistency ⊥

C. Benzmüller, 2016 —– A Success Story of Higher-Order (Automated) Theorem Proving in Computational Metaphysics 55



Inconsistency (Gödel): Informal Argument (in KB and K)

Def. D2∗ φ ess. x↔���XXXφ(x) ∧ ∀ψ(ψ(x)→ �∀y(φ(y)→ ψ(y)))

Lemma 1 The empty property is an essence of every entity. ∀x (∅ ess. x)

Theorem 1 Positive Properties are possibly exemplified. ∀φ[P(φ)→ ^∃xφ(x)]

Axiom A5 P(NE)
I by T1, A5: ^∃x[NE(x)]

Def. D3 NE(x)↔ ∀φ[φ ess. x→ �∃yφ(y)]
I ^∃x[∀φ[φ ess. x→ �∃y[φ(y)]]]
I ^∃x[∅ ess. x→ �∃y[∅(y)]]

I by L1 ^∃x[> → �∃y[∅(y)]]
I by def. of ∅ ^∃x[> → �⊥]
I ^∃x[�⊥]
I ^�⊥

Inconsistency ⊥

C. Benzmüller, 2016 —– A Success Story of Higher-Order (Automated) Theorem Proving in Computational Metaphysics 55



Inconsistency (Gödel): Informal Argument (in KB and K)

Def. D2∗ φ ess. x↔���XXXφ(x) ∧ ∀ψ(ψ(x)→ �∀y(φ(y)→ ψ(y)))

Lemma 1 The empty property is an essence of every entity. ∀x (∅ ess. x)

Theorem 1 Positive Properties are possibly exemplified. ∀φ[P(φ)→ ^∃xφ(x)]

Axiom A5 P(NE)
I by T1, A5: ^∃x[NE(x)]

Def. D3 NE(x)↔ ∀φ[φ ess. x→ �∃yφ(y)]
I ^∃x[∀φ[φ ess. x→ �∃y[φ(y)]]]
I ^∃x[∅ ess. x→ �∃y[∅(y)]]
I by L1 ^∃x[> → �∃y[∅(y)]]

I by def. of ∅ ^∃x[> → �⊥]
I ^∃x[�⊥]
I ^�⊥

Inconsistency ⊥

C. Benzmüller, 2016 —– A Success Story of Higher-Order (Automated) Theorem Proving in Computational Metaphysics 55



Inconsistency (Gödel): Informal Argument (in KB and K)

Def. D2∗ φ ess. x↔���XXXφ(x) ∧ ∀ψ(ψ(x)→ �∀y(φ(y)→ ψ(y)))

Lemma 1 The empty property is an essence of every entity. ∀x (∅ ess. x)

Theorem 1 Positive Properties are possibly exemplified. ∀φ[P(φ)→ ^∃xφ(x)]

Axiom A5 P(NE)
I by T1, A5: ^∃x[NE(x)]

Def. D3 NE(x)↔ ∀φ[φ ess. x→ �∃yφ(y)]
I ^∃x[∀φ[φ ess. x→ �∃y[φ(y)]]]
I ^∃x[∅ ess. x→ �∃y[∅(y)]]
I by L1 ^∃x[> → �∃y[∅(y)]]
I by def. of ∅ ^∃x[> → �⊥]

I ^∃x[�⊥]
I ^�⊥

Inconsistency ⊥

C. Benzmüller, 2016 —– A Success Story of Higher-Order (Automated) Theorem Proving in Computational Metaphysics 55



Inconsistency (Gödel): Informal Argument (in KB and K)

Def. D2∗ φ ess. x↔���XXXφ(x) ∧ ∀ψ(ψ(x)→ �∀y(φ(y)→ ψ(y)))

Lemma 1 The empty property is an essence of every entity. ∀x (∅ ess. x)

Theorem 1 Positive Properties are possibly exemplified. ∀φ[P(φ)→ ^∃xφ(x)]

Axiom A5 P(NE)
I by T1, A5: ^∃x[NE(x)]

Def. D3 NE(x)↔ ∀φ[φ ess. x→ �∃yφ(y)]
I ^∃x[∀φ[φ ess. x→ �∃y[φ(y)]]]
I ^∃x[∅ ess. x→ �∃y[∅(y)]]
I by L1 ^∃x[> → �∃y[∅(y)]]
I by def. of ∅ ^∃x[> → �⊥]
I ^∃x[�⊥]

I ^�⊥

Inconsistency ⊥

C. Benzmüller, 2016 —– A Success Story of Higher-Order (Automated) Theorem Proving in Computational Metaphysics 55



Inconsistency (Gödel): Informal Argument (in KB and K)

Def. D2∗ φ ess. x↔���XXXφ(x) ∧ ∀ψ(ψ(x)→ �∀y(φ(y)→ ψ(y)))

Lemma 1 The empty property is an essence of every entity. ∀x (∅ ess. x)

Theorem 1 Positive Properties are possibly exemplified. ∀φ[P(φ)→ ^∃xφ(x)]

Axiom A5 P(NE)
I by T1, A5: ^∃x[NE(x)]

Def. D3 NE(x)↔ ∀φ[φ ess. x→ �∃yφ(y)]
I ^∃x[∀φ[φ ess. x→ �∃y[φ(y)]]]
I ^∃x[∅ ess. x→ �∃y[∅(y)]]
I by L1 ^∃x[> → �∃y[∅(y)]]
I by def. of ∅ ^∃x[> → �⊥]
I ^∃x[�⊥]
I ^�⊥

Inconsistency ⊥

C. Benzmüller, 2016 —– A Success Story of Higher-Order (Automated) Theorem Proving in Computational Metaphysics 55



Inconsistency (Gödel): Informal Argument (in KB and K)

Def. D2∗ φ ess. x↔���XXXφ(x) ∧ ∀ψ(ψ(x)→ �∀y(φ(y)→ ψ(y)))

Lemma 1 The empty property is an essence of every entity. ∀x (∅ ess. x)

Theorem 1 Positive Properties are possibly exemplified. ∀φ[P(φ)→ ^∃xφ(x)]

Axiom A5 P(NE)
I by T1, A5: ^∃x[NE(x)]

Def. D3 NE(x)↔ ∀φ[φ ess. x→ �∃yφ(y)]
I ^∃x[∀φ[φ ess. x→ �∃y[φ(y)]]]
I ^∃x[∅ ess. x→ �∃y[∅(y)]]
I by L1 ^∃x[> → �∃y[∅(y)]]
I by def. of ∅ ^∃x[> → �⊥]
I ^∃x[�⊥]
I ^�⊥

Inconsistency ⊥
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Gödel’s Manuscript: Identifying the Inconsistent Axioms
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Gödel’s Manuscript: Identifying the Inconsistent Axioms

Inconsistency Scott

∀φ[P(¬φ)→ ¬P(φ)] A1(⊃)
∀φ∀ψ[(P(φ) ∧ �∀x[φ(x)→ ψ(x)])→ P(ψ)] A2
φ ess. x↔ ∀ψ(ψ(x)→ �∀y(φ(y)→ ψ(y))) D2∗

NE(x)↔ ∀φ[φ ess. x→ �∃yφ(y)] D3
P(NE) A5
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Part D:
Recent Technical Improvements
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Usability: More Intuitive Syntax for Embedded Logics in Isabelle

C. Benzmüller, 2016 —– A Success Story of Higher-Order (Automated) Theorem Proving in Computational Metaphysics 59



Improved Embedding of Modal Logic S5: S5U

Modal Logic S5
I Reflexivity: ∀x.(r x x)
I Symmetry: ∀x.∀y.(r x y)→ (r y x)
I Transitivity: ∀x.∀y.∀z.(r x y) ∧ (r y z)→ (r x z)

Modal Logic S5U: with universal accessibility
I Universality: ∀x.∀y.(r x y)

S5
�ϕ ≡ λw.∀v.���

�XXXXr(w, v)→ϕ(v) and ^ϕ ≡ λw.∃v.����XXXXr(w, v)∧ϕ(v)

S5U
�ϕ ≡ λw.∀v.ϕ(v) and ^ϕ ≡ λw.∃v.ϕ(v)
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LEO-II proves T3 (in 2,5s) directly from the Axioms in S5U!
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Inconsistency in S5U
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Conclusion

Overall Achievements

I significant contribution towards a Computational Metaphysics
I novel results contributed by HOL-ATPs
I infrastructure can be adapted for other logics and logic combinations
I basic technology works well; however, improvements still needed

Relevance (wrt foundations and applications)

I Philosophy, AI, Computer Science, Computational Linguistics, Maths

Related work: only for Anselm’s simpler argument

I first-order ATP PROVER9 [OppenheimerZalta, 2011]

I interactive proof assistant PVS [Rushby, 2013]

Ongoing/Future work

I Landscape of verified/falsified ontological arguments
I You may consider to contribute:
https://github.com/FormalTheology/GoedelGod.git
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Discussion

I LEO-II detected relevant new knowledge:
Inconsistency in Gödel’s original ontological argument
Key step: ’non-analytic’ instantiation of a second-order variable!

I LEO-II’s proof object actually contains the proof idea
I first: failed to identify the relevant puzzle pieces
I only later (discussion with Brown): reconstructed abstract-level proof
I Once a beautiful structure has been revealed it can’t be missed anymore
I Unmated low-level formal proofs, in contrast, are lacking persuasive

power
Cut-introduction instead of cut-elimination!

We need (better) tools and means to bridge between machine-oriented and
human-intuitive proofs and (counter-)models
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