
Contextuality, Cohomology and Paradox

Samson Abramsky
Joint work with Rui Soares Barbosa, Kohei Kishida,

Ray Lal and Shane Mansfield

Department of Computer Science, University of Oxford

Samson Abramsky Joint work with Rui Soares Barbosa, Kohei Kishida, Ray Lal and Shane Mansfield (Department of Computer Science, University of Oxford)Contextuality, Cohomology and Paradox 1 / 37



The Sheaf Team

Rui Soares Barbosa, Kohei Kishida, Ray Lal and Shane Mansfield

Samson Abramsky Joint work with Rui Soares Barbosa, Kohei Kishida, Ray Lal and Shane Mansfield (Department of Computer Science, University of Oxford)Contextuality, Cohomology and Paradox 2 / 37



Contextual Semantics

Contextuality. Key to the “magic” of quantum computation. Experimentally
verified, highly non-classical feature of physical reality. And pervasive in
logic, computation, and beyond.

In a nutshell: data which is locally consistent, but globally inconsistent.

We find a direct connection between the structure of quantum contextuality
and classic semantic paradoxes such as “Liar cycles”. Conversely,
contextuality offers a novel perspective on these paradoxes.

Cohomology. Sheaf theory provides the natural mathematical setting for our
analysis, since it is directly concerned with the passage from local to global.
In this setting, it is furthermore natural to use sheaf cohomology to
characterise contextuality. Cohomology is one of the major tools of modern
mathematics, which has until now largely been conspicuous by its absence,
in logic, theoretical computer science, and quantum information.

Our results show that cohomological obstructions to the extension of
local sections to global ones witness a large class of contextuality
arguments.
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Alice and Bob look at bits

0/1

a1 a2

Alice 0/1

b1 b2

Bob

Target

a2 = 1 b1 = 0
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A Probabilistic Model Of An Experiment

Example: The Bell Model

The entry in row 2 column 3 says:

If Alice looks at a1 and Bob looks at b2, then 1/8th of the time,
Alice sees a 0 and Bob sees a 1.

How can we explain this behaviour?
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Classical Correlations: The Classical Source

0/1

a1 a2

Alice 0/1

b1 b2

Bob

Target

a2 = 1 b1 = 0

0 1 0 1

...

Source
Samson Abramsky Joint work with Rui Soares Barbosa, Kohei Kishida, Ray Lal and Shane Mansfield (Department of Computer Science, University of Oxford)Contextuality, Cohomology and Paradox 6 / 37



A Simple Observation

Suppose we have propositional formulas φ1, . . . , φN

Suppose further we can assign a probability pi = Prob(φi ) to each φi .

(Story: perform experiment to test the variables in φi ; pi is the relative frequency
of the trials satisfying φi .)

Suppose that these formulas are not simultaneously satisfiable. Then (e.g.)

N−1∧
i=1

φi ⇒ ¬φN , or equivalently φN ⇒
N−1∨
i=1

¬φi .

Using elementary probability theory, we can calculate:

pN ≤ Prob(
N−1∨
i=1

¬φi ) ≤
N−1∑
i=1

Prob(¬φi ) =
N−1∑
i=1

(1− pi ) = (N − 1)−
N−1∑
i=1

pi .

Hence we obtain the inequality

N∑
i=1

pi ≤ N − 1.
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Logical analysis of the Bell table

(0, 0) (1, 0) (0, 1) (1, 1)

(a1, b1) 1/2 0 0 1/2

(a1, b2) 3/8 1/8 1/8 3/8

(a2, b1) 3/8 1/8 1/8 3/8

(a2, b2) 1/8 3/8 3/8 1/8

If we read 0 as true and 1 as false, the highlighted entries in each row of the table
are represented by the following propositions:

ϕ1 = (a1 ∧ b1) ∨ (¬a1 ∧ ¬b1) = a1 ↔ b1

ϕ2 = (a1 ∧ b2) ∨ (¬a1 ∧ ¬b2) = a1 ↔ b2

ϕ3 = (a2 ∧ b1) ∨ (¬a2 ∧ ¬b1) = a2 ↔ b1

ϕ4 = (¬a2 ∧ b2) ∨ (a2 ∧ ¬b2) = a2 ⊕ b2.

These propositions are easily seen to be contradictory.
The violation of the logical Bell inequality is 1/4.
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Example: the Hardy model
The support of the Hardy model:

(0, 0) (1, 0) (0, 1) (1, 1)

(a, b) 1 1 1 1

(a′, b) 0 1 1 1

(a, b′) 0 1 1 1

(a′, b′) 1 1 1 0

If we interpret outcome 0 as true and 1 as false, then the following formulas all
have positive probability:

a ∧ b, ¬(a ∧ b′), ¬(a′ ∧ b), a′ ∨ b′.

However, these formulas are not simultaneously satisfiable.

In this model, p2 = p3 = p4 = 1.

Hence the Hardy model achieves a violation of p1 = Prob(a ∧ b) for the logical
Bell inequality.
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a ∧ b, ¬(a ∧ b′), ¬(a′ ∧ b), a′ ∨ b′.

However, these formulas are not simultaneously satisfiable.

In this model, p2 = p3 = p4 = 1.

Hence the Hardy model achieves a violation of p1 = Prob(a ∧ b) for the logical
Bell inequality.
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A Possibilistic Model Of An Experiment

(0, 0) (0, 1) (1, 0) (1, 1)

(a1, b1) 1

(a1, b2) 0

(a2, b1) 0

(a2, b2) 0

The entry in row 1 column 1 says:

If Alice looks at a1 and Bob looks at b1, then sometimes Alice sees
a 0 and Bob sees a 0.

The entry in row 2 column 1 says:

If Alice looks at a1 and Bob looks at b2, then it never happens that
Alice sees a 0 and Bob sees a 0.

Can we explain this behaviour using a classical source?
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What Do ‘Observables’ Observe?

Surely objective properties of a physical system, which are independent of our
choice of which measurements to perform — of our measurement context.

More precisely, this would say that for each possible state of the system, there is a
function λ which for each measurement m specifies an outcome λ(m),
independently of which other measurements may be performed.

This point of view is called non-contextuality. It is equivalent to the assumption
of a classical source.

However, this view is impossible to sustain in the light of our actual
observations of (micro)-physical reality.
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Hidden Variables: The Mermin instruction set picture

Alice Bob

a, a′, . . . b, b′, . . .

0110

...

aa′bb′

Source

0110 0110

Target

a 7→ 0 b 7→ 1
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The ‘Hardy Paradox’

Hardy models: those whose support satisfies

However, this would require the outcome (0, 0) for measurements (a2, b1) to be
possible, and this is precluded.

Thus Hardy models are contextual. They cannot be explained by a classical
source.
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Quantum Mechanics changes the game

It seems then that the kind of behaviour exhibited in these tables is not realisable.

However, if we use quantum rather than classical resources, it is realisable!

More specifically, if we use an entangled qubit as a shared resource between
Alice and Bob, who may be spacelike separated, then behaviour of exactly the
kind we have considered can be achieved.

Alice and Bob’s choices are now of measurement setting (e.g. which direction
to measure spin) rather than “which register to load”.
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The Quantum Case: Spin Measurements

States of the system can be described by complex unit vectors in C2. These can
be visualized as points on the unit 2-sphere:

|+〉

|−〉

|+〉

|−〉

|Ψ〉

Spin can be measured in any direction; so there are a continuum of possible
measurements. There are two possible outcomes for each such measurement;
spin in the specified direction, or in the opposite direction. These two directions
are represented by a pair of orthogonal vectors. They are represented on the
sphere as a pair of antipodal points.

Note the appearance of quantization here: there are not a continuum of possible
outcomes for each measurement, but only two!
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The Stern-Gerlach Experiment
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Quantum Entanglement

Bell state:

|↑↑〉+ |↓↓〉

EPR state:

|01〉+ |10〉

Compound systems are represented by tensor product: H1 ⊗H2. Typical
element: ∑

i

λi · φi ⊗ ψi

Superposition encodes correlation.

Einstein’s ‘spooky action at a distance’. Even if the particles are spatially
separated, measuring one has an effect on the state of the other.

Bell’s theorem: QM is essentially non-local.
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A Possibilistic Model Of An Experiment

(0, 0) (0, 1) (1, 0) (1, 1)

(a1, b1) 1

(a1, b2) 0

(a2, b1) 0

(a2, b2) 0

This model can be physically realised in quantum mechanics.

There is an entangled state of two qubits, and directions for spin measurements
a1, a2 for Alice and b1, b2 for Bob, which generate this table according to the
predictions of quantum mechanics.

Moreover, behaviour of this kind has been extensively experimentally confirmed.

This is really how the world is!

This proves a strong version of Bell’s theorem.
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Strong Contextuality

A B (0, 0) (1, 0) (0, 1) (1, 1)

a1 b1 1 0 0 1

a1 b2 1 0 0 1

a2 b1 1 0 0 1

a2 b2 0 1 1 0

The PR Box
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Visualizing Contextuality

•a1

•
b1

• a2

•
b2
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•1
•

•
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•

•a1

•
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•
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The Hardy table and the PR box as bundles
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Contextuality, Logic and Paradoxes

Liar cycles. A Liar cycle of length N is a sequence of statements

S1 : S2 is true,

S2 : S3 is true,
...

SN−1 : SN is true,

SN : S1 is false.

For N = 1, this is the classic Liar sentence

S : S is false.

Following Cook, Walicki et al. we can model the situation by boolean equations:

x1 = x2, . . . , xn−1 = xn, xn = ¬x1

The “paradoxical” nature of the original statements is now captured by the
inconsistency of these equations.
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Contextuality in the Liar; Liar cycles in the PR Box

We can regard each of these equations as fibered over the set of variables which
occur in it:

{x1, x2} : x1 = x2

{x2, x3} : x2 = x3

...

{xn−1, xn} : xn−1 = xn

{xn, x1} : xn = ¬x1

Any subset of up to n − 1 of these equations is consistent; while the whole set is
inconsistent.

Up to rearrangement, the Liar cycle of length 4 corresponds exactly to the
PR box.

The usual reasoning to derive a contradiction from the Liar cycle corresponds
precisely to the attempt to find a univocal path in the bundle diagram.
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Paths to contradiction

•a1

•
b1

• a2

•
b2

•0

•1
•

•
1

• 0

• 1

•0

•

Suppose that we try to set a2 to 1. Following the path on the right leads to the
following local propagation of values:

a2 = 1 ; b1 = 1 ; a1 = 1 ; b2 = 1 ; a2 = 0

a2 = 0 ; b1 = 0 ; a1 = 0 ; b2 = 0 ; a2 = 1

We have discussed a specific case here, but the analysis can be generalised to a
large class of examples.
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The Robinson Consistency Theorem

A classic result:

Theorem (Robinson Joint Consistency Theorem)

Let Ti be a theory over the language Li , i = 1, 2. If there is no sentence φ in
L1 ∩ L2 with T1 ` φ and T2 ` ¬φ, then T1 ∪ T2 is consistent.

Thus this theorem says that two compatible theories can be glued together. In
this binary case, local consistency implies global consistency.

Note, however, that an extension of the theorem beyond the binary case fails.
That is, if we have three theories which are pairwise compatible, it need not be
the case that they can be glued together consistently.

A minimal counter-example is provided at the propositional level by the following
“triangle”:

T1 = {x1 −→ ¬x2}, T2 = {x2 −→ ¬x3}, T3 = {x3 −→ ¬x1}.

This example is well-known in the quantum contextuality literature as the
Specker triangle.
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Sheaf formulation of contextuality
Measurement scenarios 〈X ,M,O〉 :

X is a set of variables or measurement labels. Sufficient to consider finite
discrete space — the base space of the bundle.

M = {Ci}i∈I set of contexts i.e. co-measurable variables. In quantum
terms, compatible observables.

O is set of outcomes or values for the variables, which we take to be the
same in each fibre.

We have a sheaf of sets over P(X ), namely E :: U 7−→ OU with restriction

E(U ⊆ U ′) : E(U ′) −→ E(U) :: s 7−→ s|U .

Each s ∈ E(U) is a section, and, in particular, g ∈ E(X ) is a global section.

A probability table can be represented by a family {pC}C∈M with pC a probability
distribution on E(C ) = OC , where contexts C corresponds to the rows of the
table.
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Empirical Models

The logical and strong forms of contextuality are concerned with possibilities,
which can be represented by a subpresheaf S of E , where for each context U ⊆ X ,
S(U) ⊆ OU is the set of all possible outcomes.

Explicitly, S is defined as follows, where supp (pC |U ∩ C ) is the support of the
marginal of pC at U ∩ C .

S(U) :=
{
s ∈ OU

∣∣ ∀C ∈M. s|U ∩ C ∈ supp (pC |U ∩ C )
}

Abstracting from this situation, we assume we are dealing with a sub-presheaf S
of E with certain properties.

We can use this formalisation to characterize contextuality as follows.

Definition
For any empirical model S:

For all C ∈M and s ∈ S(C ), S is logically contextual at s, written LC(S, s),
if s is not a member of any compatible family.

S is strongly contextual, written SC(S), if LC(S, s) for all s. Equivalently,
if it has no global section, i.e. if S(X ) = ∅.
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}

Abstracting from this situation, we assume we are dealing with a sub-presheaf S
of E with certain properties.

We can use this formalisation to characterize contextuality as follows.

Definition
For any empirical model S:

For all C ∈M and s ∈ S(C ), S is logically contextual at s, written LC(S, s),
if s is not a member of any compatible family.

S is strongly contextual, written SC(S), if LC(S, s) for all s. Equivalently,
if it has no global section, i.e. if S(X ) = ∅.
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Summary of Cohomological Characterization

We have a cover
U = {C1, . . . ,Cn}

of measurement contexts.

Given s = s1 ∈ Se(C1), we define

z = δ0(s1, . . . , sn),

where s1|C1∩Ci = si |C1∩Ci , i = 1, . . . , n.

This is a cocycle in the relative C̆ech cohomology with respect to C1.

We define
γ(s) = [z ] ∈ Ȟ1(U ,FC̄1

)

where F is the AbGrp-valued presheaf Z[Se ].

Here γ is in fact the connecting homomorphism of the long exact sequence.
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Basic Results

Proposition

The following are equivalent:

1 The cohomology obstruction vanishes: γ(s1) = 0.

2 There is a family {ri ∈ F(Ci )} with s1 = r1, and for all i , j :

ri |Ci ∩ Cj = rj |Ci ∩ Cj .

Proposition

If the model e is possibilistically extendable, then the obstruction vanishes for
every section in the support of the model. If e is not strongly contextual, then the
obstruction vanishes for some section in the support.

Thus non-vanishing of the obstruction provides a cohomological witness for
contextuality.
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Notes on Cohomology

There are false positives because of negative coefficients in cochains.

We can effectively compute (mod 2) witnesses in many cases of interest:
GHZ, Kylachko, Peres-Mermin, large class of Kochen-Specker models, . . .

In recent work, we obtain very general results in cases where the outcomes
themselves have a module structure (over the same ring as the cohomology
coefficients).

This yields cohomological characterisations of All-vs.-Nothing proofs
(Mermin). These account for most of the contextuality arguments in the
quantum literature. In particular, we can find large classes of concrete
examples in stabiliser QM.

Theorem

Let S be an empirical model on 〈X ,M,R〉. Then:

AvNR(S) ⇒ SC(Aff S) ⇒ CSCR(S) ⇒ CSCZ(S) ⇒ SC(S) .
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Relational databases

This geometric picture and the associated methods can be applied to a wide range
of situations in classical computer science.

In particular, as we shall now see, there is an isomorphism between the formal
description we have given for the quantum notions of non-locality and
contextuality, and basic definitions and concepts in relational database theory.

Samson Abramsky, ‘Relational databases and Bell’s theorem’, In In Search of
Elegance in the Theory and Practice of Computation: Essays Dedicated to Peter
Buneman, Springer 2013.

branch-name account-no customer-name balance

Cambridge 10991-06284 Newton £2,567.53

Hanover 10992-35671 Leibniz e11,245.75

. . . . . . . . . . . .
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From possibility models to databases

Consider again the Hardy model:

(0, 0) (0, 1) (1, 0) (1, 1)

(a1, b1) 1 1 1 1

(a1, b2) 0 1 1 1

(a2, b1) 0 1 1 1

(a2, b2) 1 1 1 0

Change of perspective:

a1, a2, b1, b2 attributes

0, 1 data values

joint outcomes of measurements tuples
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The Hardy model as a relational database
The four rows of the model turn into four relation tables:

a1 b1

0 0

0 1

1 0

1 1

a1 b2

0 1

1 0

1 1

a2 b1

0 1

1 0

1 1

a2 b2

0 0

1 0

0 1

What is the DB property corresponding to the presence of
non-locality/contextuality in the Hardy table?

There is no universal relation: no table

a1 a2 b1 b2

...
...

...
...

whose projections onto {ai , bi}, i = 1, 2, yield the above four tables.

Samson Abramsky Joint work with Rui Soares Barbosa, Kohei Kishida, Ray Lal and Shane Mansfield (Department of Computer Science, University of Oxford)Contextuality, Cohomology and Paradox 32 / 37



The Hardy model as a relational database
The four rows of the model turn into four relation tables:

a1 b1

0 0

0 1

1 0

1 1

a1 b2

0 1

1 0

1 1

a2 b1

0 1

1 0

1 1

a2 b2

0 0

1 0

0 1

What is the DB property corresponding to the presence of
non-locality/contextuality in the Hardy table?

There is no universal relation: no table

a1 a2 b1 b2

...
...

...
...

whose projections onto {ai , bi}, i = 1, 2, yield the above four tables.

Samson Abramsky Joint work with Rui Soares Barbosa, Kohei Kishida, Ray Lal and Shane Mansfield (Department of Computer Science, University of Oxford)Contextuality, Cohomology and Paradox 32 / 37



The Hardy model as a relational database
The four rows of the model turn into four relation tables:

a1 b1

0 0

0 1

1 0

1 1

a1 b2

0 1

1 0

1 1

a2 b1

0 1

1 0

1 1

a2 b2

0 0

1 0

0 1

What is the DB property corresponding to the presence of
non-locality/contextuality in the Hardy table?

There is no universal relation: no table

a1 a2 b1 b2

...
...

...
...

whose projections onto {ai , bi}, i = 1, 2, yield the above four tables.
Samson Abramsky Joint work with Rui Soares Barbosa, Kohei Kishida, Ray Lal and Shane Mansfield (Department of Computer Science, University of Oxford)Contextuality, Cohomology and Paradox 32 / 37



A dictionary

Relational databases measurement scenarios

attribute measurement

set of attributes defining a relation table compatible set of measurements

database schema measurement cover

tuple local section (joint outcome)

relation/set of tuples boolean distribution on joint outcomes

universal relation instance global section/hidden variable model

acyclicity Vorob’ev condition

We can also consider probabilistic databases and other generalisations;
cf. provenance semirings.
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Contextual Semantics

Why do such similar structures arise in such apparently different settings?

The phenomenon of contextuality is pervasive. Once we start looking for it, we
can find it everywhere!
Physics, computation, logic, natural language, . . . biology, economics, . . .

The Contextual semantics hypothesis: we can find common mathematical
structure in all these diverse manifestations, and develop a widely applicable
theory.

More than a hypothesis! Already extensive results in

Quantum information and foundations: hierarchy of contextuality, logical
characterisation of Bell inequalities, classification of multipartite entangled
states, cohomological characterisation of contextuality, structural explanation
of macroscopic locality, . . .

And beyond: connections with databases, robust refinement of the constraint
satisfaction paradigm, application of contextual semantics to natural language
semantics, connections with team semantics in Dependence logics, . . .

For an accessible overview of Contextual Semantics, see the article in the Logic in
Computer Science Column, Bulletin of EATCS No. 113, June 2014 (and arXiv).
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theory.

More than a hypothesis! Already extensive results in

Quantum information and foundations: hierarchy of contextuality, logical
characterisation of Bell inequalities, classification of multipartite entangled
states, cohomological characterisation of contextuality, structural explanation
of macroscopic locality, . . .

And beyond: connections with databases, robust refinement of the constraint
satisfaction paradigm, application of contextual semantics to natural language
semantics, connections with team semantics in Dependence logics, . . .

For an accessible overview of Contextual Semantics, see the article in the Logic in
Computer Science Column, Bulletin of EATCS No. 113, June 2014 (and arXiv).
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Comrades in Arms in Contextual Semantics:
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Some Recent Developments

Hardy is almost everywhere: with bipartite exceptions, an algorithm which
given an n-qubit entangled state, constructs n + 2 local observables leading
to a logically contextual model.

Characterization of the face lattice of the No-Signalling polytope as
isomorphic to the support lattice.

General characterisation of All-versus-Nothing arguments. The cohomology
invariant captures contextuality for all such models. Large classes of quantum
examples using stabiliser groups.
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