Degrees that are not Degrees of Categoricity

Bernard Anderson and Barbara Csima

University of Waterloo

March 26, 2011

www.math.uwaterloo.ca/~b7anders
A structure (coded as a subset of ω) is a **computable structure** if its domain and atomic diagram are computable.

Without loss of generality, we assume all computable structures have domain ω.

We denote the n-th computable structure under some effective listing by A_n.
Definition

Let \mathcal{A} be a computable structure. We say that \mathcal{A} is **computably categorical** if for every computable structure $\mathcal{B} \cong \mathcal{A}$ there is a computable isomorphism $f : \mathcal{A} \to \mathcal{B}$.

Example

Given two computable copies of the dense linear orders without endpoints (DLO) we can find a computable isomorphism between them. Therefore they are computably categorical structures.
Computably categorical structures

Definition

Let \mathcal{A} be a computable structure. We say that \mathcal{A} is **computably categorical** if for every computable structure $\mathcal{B} \cong \mathcal{A}$ there is a computable isomorphism $f : \mathcal{A} \to \mathcal{B}$.

Example

Given two computable copies of the dense linear orders without endpoints (DLO) we can find a computable isomorphism between them.

Therefore they are computably categorical structures.
Definition

Let \mathcal{A} be a computable structure and x a Turing degree. We say that \mathcal{A} is x-computably categorical if for every computable structure $\mathcal{B} \cong \mathcal{A}$ there is an isomorphism $f : \mathcal{A} \to \mathcal{B}$ with $f \leq_T x$.

Example

The standard ordering on \mathbb{N} is $0'$-computably categorical. To build an isomorphism to a computable copy, we use $0'$ to determine how many predecessors each element has.
Definition
Let \mathcal{A} be a computable structure and x a Turing degree. We say that \mathcal{A} is x-computably categorical if for every computable structure $\mathcal{B} \cong \mathcal{A}$ there is an isomorphism $f : \mathcal{A} \to \mathcal{B}$ with $f \leq_T x$.

Example
The standard ordering on \mathbb{N} is $\mathbf{0}'$-computably categorical.

To build an isomorphism to a computable copy, we use $\mathbf{0}'$ to determine how many predecessors each element has.
Degrees of categoricity

Definition

CatSpec(\(\mathcal{A}\)) = \{x \mid \mathcal{A} \text{ is } x\text{-computably categorical}\}

Definition (Fokina, Kalimullin, and Miller)

A Turing degree \(x\) is a degree of categoricity if there is a computable structure \(\mathcal{A}\) such that \(x \in \text{CatSpec}(\mathcal{A})\) and for all \(y \in \text{CatSpec}(\mathcal{A})\) we have \(x \leq_T y\).

Degrees of categoricity are sometimes called categorically definable degrees.
Degrees of categoricity

Definition

\[\text{CatSpec}(\mathcal{A}) = \{ x \mid \mathcal{A} \text{ is } x\text{-computably categorical} \} \]

Definition (Fokina, Kalimullin, and Miller)

A Turing degree \(x \) is a degree of categoricity if there is a computable structure \(\mathcal{A} \) such that \(x \in \text{CatSpec}(\mathcal{A}) \) and for all \(y \in \text{CatSpec}(\mathcal{A}) \) we have \(x \leq_T y \).

Degrees of categoricity are sometimes called categorically definable degrees.
Summary

A witnesses \(x \) is a degree of categoricity if \(x \) is the least degree that can compute isomorphisms between \(A \) and any computable structure isomorphic to it.

Example

For example, computable copies of the DLO witness that \(0 \) is a degree of categoricity.
Strong degrees of categoricity

Definition

A Turing degree x is a **strong degree of categoricity** if there is a computable structure A with computable copies B and M such that A is x-computably categorical, and for every isomorphism $f : B \to M$ we have $x \leq_T f$.

Remark

Strong degrees of categoricity are degrees of categoricity.
Known results (positive)

Fokina, Kalimullin, and Miller developed the basic method for showing degrees are degrees of categoricity.

Theorem (Fokina, Kalimullin, and Miller)

Let x be a d.c.e. degree. Then x is a [strong] degree of categoricity.

This result can be relativized to finite and transfinite jumps.

Theorem (Fokina, Kalimullin, and Miller)

Let $n \in \omega$ and let x be d.c.e.(\emptyset(n)) with $x \geq T_\emptyset(n)$. Then x is a [strong] degree of categoricity.

Theorem (Csima, Franklin, and Shore)

Let $\alpha < \omega_{CK}^1$ and let x be d.c.e.(\emptyset(\alpha)) with $x \geq T_\emptyset(\alpha)$. Then x is a [strong] degree of categoricity.
Known results (positive)

Fokina, Kalimullin, and Miller developed the basic method for showing degrees are degrees of categoricity.

Theorem (Fokina, Kalimullin, and Miller)

Let x be a d.c.e. degree. Then x is a [strong] degree of categoricity.

This result can be relativized to finite and transfinite jumps.

Theorem (Fokina, Kalimullin, and Miller)

Let $n \in \omega$ and let x be d.c.e.($\emptyset^{(n)}$) with $x \geq_T \emptyset^{(n)}$. Then x is a [strong] degree of categoricity.

Theorem (Csima, Franklin, and Shore)

Let $\alpha < \omega_1^{CK}$ and let x be d.c.e.($\emptyset^{(\alpha)}$) with $x \geq_T \emptyset^{(\alpha)}$. Then x is a [strong] degree of categoricity.
It is easy to see that there are at most countably many degrees of categoricity.

It has been shown that all degrees of categoricity are hyperarithmetic.

Theorem (Fokina, Kalimullin, and Miller)

If $x \notin \text{HYP}$, then x is not a strong degree of categoricity.

Theorem (Csima, Franklin, and Shore)

If $x \notin \text{HYP}$, then x is not a degree of categoricity.
In this talk we will show several more negative results. We start by considering a straight-forward example.

Proposition (Anderson and Csima)

There is a degree $x \leq_T 0''$ that is not a degree of categoricity.
In this talk we will show several more negative results. We start by considering a straight-forward example.

Proposition (Anderson and Csima)

There is a degree $x \leq_T 0''$ that is not a degree of categoricity.

Ideas for proof

- We construct a noncomputable X by finite extensions using a \emptyset'' oracle.

- We build X so that for any computable structure A_m we have $\text{Deg}(X) \in \text{CatSpec}(A_m) \Rightarrow 0 \in \text{CatSpec}(A_m)$.
For every \((l, m, k)\) we want to satisfy:

Either \(\Phi^X_l\) is not an isomorphism from \(A_m\) to \(A_k\), or there is a computable isomorphism.
Warm up proposition (continued)

Ideas for proof (continued)

- For every (l, m, k) we want to satisfy: Either Φ_l^X is not an isomorphism from A_m to A_k, or there is a computable isomorphism.

- Given a string σ we wish to determine if there is a $\tau \supseteq \sigma$ such that Φ_l^τ cannot be extended to an isomorphism.
Warm up proposition (continued)

Ideas for proof (continued)

- For every \((l, m, k)\) we want to satisfy: Either \(\Phi^X_l\) is not an isomorphism from \(A_m\) to \(A_k\), or there is a computable isomorphism.

- Given a string \(\sigma\) we wish to determine if there is a \(\tau \supseteq \sigma\) such that \(\Phi^\tau_l\) cannot be extended to an isomorphism.

- We ask \(\emptyset'\): Is there a \(\tau \supseteq \sigma\) such that \(\Phi^\tau_l\) is seen not to be an injective homomorphism?
Warm up proposition (continued)

Ideas for proof (continued)

- For every \((l, m, k)\) we want to satisfy:
 Either \(\Phi_l^X\) is not an isomorphism from \(A_m\) to \(A_k\), or there is a computable isomorphism.

- Given a string \(\sigma\) we wish to determine if there is a \(\tau \supseteq \sigma\) such that \(\Phi_l^\tau\) cannot be extended to an isomorphism.

- We ask \(\emptyset'\): Is there a \(\tau \supseteq \sigma\) such that \(\Phi_l^\tau\) is seen not to be an injective homomorphism?

- We ask \(\emptyset''\): Is there a \(\tau \supseteq \sigma\) and a \(d \in \omega\) such that for every \(\gamma \supseteq \tau\) we have \(d\) is not in the domain or range of \(\Phi_l^\gamma\)?
For every \((l, m, k)\) we want to satisfy:
Either \(\Phi^X_l\) is not an isomorphism from \(A_m\) to \(A_k\), or there is a computable isomorphism.

Given a string \(\sigma\) we wish to determine if there is a \(\tau \supseteq \sigma\) such that \(\Phi^\tau_l\) cannot be extended to an isomorphism.

We ask \(\emptyset'\): Is there a \(\tau \supseteq \sigma\) such that \(\Phi^\tau_l\) is seen not to be an injective homomorphism?

We ask \(\emptyset''\): Is there a \(\tau \supseteq \sigma\) and a \(d \in \omega\) such that for every \(\gamma \supseteq \tau\) we have \(d\) is not in the domain or range of \(\Phi^\gamma_l\)?

Yes: extend to \(\tau\). No: there is a computable isomorphism.
We wish to generalize this proof to come up with a negative result on a broad class of sets.

Definition

A set G is **n-generic** if for every Σ_n subset S of $2^{<\omega}$ there is an l such that either $G \upharpoonright l \in S$ or for all $\tau \supseteq G \upharpoonright l$ we have $\tau \notin S$.

Bernard Anderson and Barbara Csima

Degrees that are not Degrees of Categoricity
2-generic relative to some perfect tree

We wish to generalize this proof to come up with a negative result on a broad class of sets.

Definition

A set G is \(n\)-generic if for every Σ_n subset S of $2^{<\omega}$ there is an l such that either $G \upharpoonright l \in S$ or for all $\tau \supseteq G \upharpoonright l$ we have $\tau \notin S$.

Definition

A set G is \(n\)-generic relative to the perfect tree T if G is a path through T and for every $\Sigma_n(T)$ subset S of T, there is an l such that either $G \upharpoonright l \in S$ or for all $\tau \supseteq G \upharpoonright l$ with $\tau \in T$ we have $\tau \notin S$.

Bernard Anderson and Barbara Csima

Degrees that are not Degrees of Categoricity
2-generic relative to some perfect tree

We wish to generalize this proof to come up with a negative result on a broad class of sets.

Definition

A set G is **n-generic** if for every Σ_n subset S of $2^{<\omega}$ there is an l such that either $G \upharpoonright l \in S$ or for all $\tau \supseteq G \upharpoonright l$ we have $\tau \notin S$.

Definition

A set G is **n-generic relative to the perfect tree T** if G is a path through T and for every $\Sigma_n(T)$ subset S of T, there is an l such that either $G \upharpoonright l \in S$ or for all $\tau \supseteq G \upharpoonright l$ with $\tau \in T$ we have $\tau \notin S$.

Definition

A set G is **n-generic relative to some perfect tree** if there exists a perfect tree T such that G is n-generic relative to T.
We can now use this to limit degrees of categoricity to a small, easily defined class.

Theorem (Anderson)

For every n, there are only countably many sets that are not n-generic relative to any perfect tree.

Theorem (Anderson and Csima)

Let G be 2-generic relative to some perfect tree and $g = \text{Deg}(G)$. Then g is not a degree of categoricity.
We can now use this to limit degrees of categoricity to a small, easily defined class.

Theorem (Anderson)

For every n, there are only countably many sets that are not n-generic relative to any perfect tree.

Generalizing the methods used to construct a degree below $0''$ we can prove:

Theorem (Anderson and Csima)

Let G be 2-generic relative to some perfect tree and $g = \text{Deg}(G)$. Then g is not a degree of categoricity.
The theorem allows us to find a degree that is not a degree of categoricity between any set and its double jump.

Corollary

Let X and A be sets such that X is 2-generic (A). Then $x \oplus a$ is not a degree of categoricity.

Corollary

For every x there is a y such that $x \leq_T y \leq_T x''$ and y is not a degree of categoricity.
We can also exclude degrees of categoricity from another class.

Definition

A degree x is hyperimmune-free if for every function $f \leq_T x$ there is a computable function g which dominates f.

We notice that all known degrees of categoricity are between jumps and hence hyperimmune.
We can also exclude degrees of categoricity from another class.

Definition

A degree x is **hyperimmune-free** if for every function $f \leq_T x$ there is a computable function g which dominates f.

We notice that all known degrees of categoricity are between jumps and hence hyperimmune.

Theorem (Anderson and Csima)

Let x be a noncomputable hyperimmune-free degree. Then x is not a degree of categoricity.
There are no hyperimmune-free degrees or degrees of sets 2-generic relative to some perfect tree that are Σ_2.

However, we can construct a Σ_2 set whose degree is not a degree of categoricity directly.

Theorem (Anderson and Csima)

There is a Σ_2 degree that is not a degree of categoricity.
Ideas for proof

- We construct X to be c.e. in a \emptyset' oracle.
Ideas for proof

- We construct X to be c.e. in a \emptyset' oracle.

- Unlike our earlier construction, we can no longer ask \emptyset'' oracle questions.
Ideas for proof

- We construct X to be c.e. in a \emptyset' oracle.

- Unlike our earlier construction, we can no longer ask \emptyset'' oracle questions.

- We weaken the requirement that $x \in \text{CatSpec}(\mathcal{A}_m) \Rightarrow 0 \in \text{CatSpec}(\mathcal{A}_m)$.

- Instead, for each $m \in \omega$ we construct a $Y_m \not\leq_T X$ such that for all k, if X computes an isomorphism from \mathcal{A}_m to \mathcal{A}_k then so does Y_m.

Bernard Anderson and Barbara Csima

Degrees that are not Degrees of Categoricity
Ideas for proof

- We construct X to be c.e. in a \emptyset' oracle.

- Unlike our earlier construction, we can no longer ask \emptyset'' oracle questions.

- We weaken the requirement that $x \in \text{CatSpec}(A_m) \Rightarrow 0 \in \text{CatSpec}(A_m)$.

- Instead, for each $m \in \omega$ we construct a $Y_m \not\geq^T X$ such that for all k, if X computes an isomorphism from A_m to A_k then so does Y_m.

- Each Y_m witnesses x is not the least degree in $\text{CatSpec}(A_m)$.
Ideas for proof (continued)

- We split each Y_m into columns, $Y_m^{[l,k]}$.

- We maintain $Y_m^{[l,k]}(t) = 0 \Rightarrow X(t) = 0$ for all t.
We split each γ_m into columns, $\gamma_m^{[l,k]}$.

We maintain $\gamma_m^{[l,k]}(t) = 0 \Rightarrow X(t) = 0$ for all t.

If we appear unable to block Φ_l^X from becoming an isomorphism from A_m to A_k, we will try to make $f = \Phi_l \gamma_m^{[l,k]}$ an isomorphism.
We split each Y_m into columns, $Y_m^{[l,k]}$.

We maintain $Y_m^{[l,k]}(t) = 0 \Rightarrow X(t) = 0$ for all t.

If we appear unable to block Φ_l^X from becoming an isomorphism from A_m to A_k, we will try to make $f = \Phi_l^{Y_m^{[l,k]}}$ an isomorphism.

We build X by finite extensions except at special stages called slides.
Ideas for proof (continued)

- Given σ we ask \emptyset' if there is a $\tau \supseteq \sigma$ such that Φ_{l}^{τ} is not a partial injective homomorphism from A_m to A_k.

- At this point we have [roughly speaking] $X \upharpoonright \sigma = Y_{m}^{[l,k]} \upharpoonright \sigma$.
Given σ we ask \emptyset' if there is a $\tau \supseteq \sigma$ such that Φ^τ_l is not a partial injective homomorphism from A_m to A_k.

At this point we have [roughly speaking] $X \upharpoonright \sigma = Y_m^{[l,k]} \upharpoonright \sigma$.

If yes, we extend to τ and are done for (l,m,k).

If no, then for all $\gamma \supseteq \sigma$ we have Φ^γ_l is a partial injective homomorphism.
Ideas for proof (continued)

- Given σ we ask \emptyset' if there is a $\tau \supseteq \sigma$ such that Φ^τ_l is not a partial injective homomorphism from A_m to A_k.

- At this point we have [roughly speaking] $X \upharpoonright \sigma = Y_{m}^{[l,k]} \upharpoonright \sigma$.

- If yes, we extend to τ and are done for (l, m, k).

- If no, then for all $\gamma \supseteq \sigma$ we have Φ^γ_l is a partial injective homomorphism.

- We attempt to build $Y_{m}^{[l,k]} \supseteq \sigma$ by finite extensions to ensure every $d \in \omega$ is in the domain and range of $f = \Phi^Y_{m}^{[l,k]}$.

Bernard Anderson and Barbara Csima

Degrees that are not Degrees of Categoricity
Problem: What if no extension for $Y_{m}^{[l,k]}$ puts d into the domain and range of f?

In this case we perform a slide. We change $X(t)$ from 0 to 1 for all t where X differs from $Y_{m}^{[l,k]}$. We now have $X = Y_{m}^{[l,k]}$ and since Φ_X cannot be made into an isomorphism, we are done for (l, m, k). Many weaker priorities are injured, but a finite injury construction is possible.
Ideas for proof (conclusion)

- **Problem:** What if no extension for $\gamma_m^{[l,k]}$ puts d into the domain and range of f?

- In this case we perform a slide. We change $X(t)$ from 0 to 1 for all t where X differs from $\gamma_m^{[l,k]}$.

- We now have $X = \gamma_m^{[l,k]}$ and since Φ_l^X cannot be made into an isomorphism, we are done for (l, m, k).

Bernard Anderson and Barbara Csima

Degrees that are not Degrees of Categoricity
Ideas for proof (conclusion)

- Problem: What if no extension for $\gamma_{l,k}^m$ puts d into the domain and range of f?

- In this case we perform a slide. We change $X(t)$ from 0 to 1 for all t where X differs from $\gamma_{l,k}^m$.

- We now have $X = \gamma_{l,k}^m$ and since Φ_i^X cannot be made into an isomorphism, we are done for (l, m, k).

- Many weaker priorities are injured, but a finite injury construction is possible.
Conclusion

There is still a lot of open ground in determining how simple a degree can be without being a degree of categoricity.

Open questions

1. Is every 3-c.e. degree a degree of categoricity?
2. Is there a Δ^2_2 degree which is not a degree of categoricity?
3. Is there a degree of categoricity which is not a strong degree of categoricity?

Thank you.
There is still a lot of open ground in determining how simple a degree can be without being a degree of categoricity.

Open questions

1. Is every 3-c.e. degree a degree of categoricity?

2. Is there a Δ_2 degree which is not a degree of categoricity?
Conclusion

There is still a lot of open ground in determining how simple a degree can be without being a degree of categoricity.

Open questions

1. Is every 3-c.e. degree a degree of categoricity?

2. Is there a Δ_2 degree which is not a degree of categoricity?

3. Is there a degree of categoricity which is not a strong degree of categoricity?
There is still a lot of open ground in determining how simple a degree can be without being a degree of categoricity.

Open questions

1. Is every 3-c.e. degree a degree of categoricity?

2. Is there a Δ_2 degree which is not a degree of categoricity?

3. Is there a degree of categoricity which is not a strong degree of categoricity?

Thank you.